The trajectory of the projectile is given by: \[ y = x - \frac{x^2}{20}. \] The maximum height corresponds to the point where the slope of the trajectory (\( \frac{dy}{dx} \)) is zero.
Step 1: Differentiate \( y \) with respect to \( x \). \[ \frac{dy}{dx} = 1 - \frac{2x}{20} = 1 - \frac{x}{10}. \] At the maximum height: \[ \frac{dy}{dx} = 0 \implies 1 - \frac{x}{10} = 0 \implies x = 10 \, \text{m}. \]
Step 2: Calculate the maximum height. Substitute \( x = 10 \) into the equation for \( y \): \[ y = 10 - \frac{10^2}{20}. \] Simplify: \[ y = 10 - \frac{100}{20} = 10 - 5 = 5 \, \text{m}. \]
Final Answer: The maximum height attained by the projectile is: \[ \boxed{5 \, \text{m}}. \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: