(B) 5 m/s
(C) 20 m/s
(D) 15 m/s
The interaction between the two bodies due to which the direction and magnitude of the velocity of the colliding bodies changes are called a collision.
If in a particular collision, there is no dissipation of energy, the total kinetic energy of the objects before collision is equal to the total kinetic energy of the objects after collision. Such a collision is termed an Elastic collision.
If, in a particular collision, there is a dissipation of energy, the total kinetic energy of the objects before and after collision is not conserved. Such a collision is termed an inelastic collision.
Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Knowing the initial position \( x_0 \) and initial momentum \( p_0 \) is enough to determine the position and momentum at any time \( t \) for a simple harmonic motion with a given angular frequency \( \omega \).
Reason (R): The amplitude and phase can be expressed in terms of \( x_0 \) and \( p_0 \).
In the light of the above statements, choose the correct answer from the options given below:
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
