Given:
- The process is isobaric, and \( \Delta T = 50^\circ \text{C} \). - The heat added in an isobaric process is \( Q = n C_p \Delta T = E_1 \). - The change in internal energy in an isobaric process is \( \Delta U = n C_v \Delta T = E_2 \).
Since \( \frac{E_1}{E_2} = \frac{C_p}{C_v} = \gamma \), we can relate the ratio of the heat capacities to the ratio of the energies. \[ \frac{E_1}{E_2} = \frac{C_p}{C_v} = \gamma. \]
For a monoatomic gas, the value of \( \gamma \) is given by: \[ \gamma = 1 + \frac{2}{f}, \] where \( f \) is the number of degrees of freedom of the gas. For a monoatomic gas, \( f = 3 \). Substituting this value: \[ \gamma = 1 + \frac{2}{3} = \frac{5}{3}. \]
The equation given in the problem is: \[ \frac{5}{3} = \frac{x}{9}. \] Solving for \( x \): \[ x = 15. \]
The value of \( x \) is \( \boxed{15} \).
The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
The least acidic compound, among the following is
Choose the correct set of reagents for the following conversion: