Given:
- The process is isobaric, and \( \Delta T = 50^\circ \text{C} \). - The heat added in an isobaric process is \( Q = n C_p \Delta T = E_1 \). - The change in internal energy in an isobaric process is \( \Delta U = n C_v \Delta T = E_2 \).
Since \( \frac{E_1}{E_2} = \frac{C_p}{C_v} = \gamma \), we can relate the ratio of the heat capacities to the ratio of the energies. \[ \frac{E_1}{E_2} = \frac{C_p}{C_v} = \gamma. \]
For a monoatomic gas, the value of \( \gamma \) is given by: \[ \gamma = 1 + \frac{2}{f}, \] where \( f \) is the number of degrees of freedom of the gas. For a monoatomic gas, \( f = 3 \). Substituting this value: \[ \gamma = 1 + \frac{2}{3} = \frac{5}{3}. \]
The equation given in the problem is: \[ \frac{5}{3} = \frac{x}{9}. \] Solving for \( x \): \[ x = 15. \]
The value of \( x \) is \( \boxed{15} \).
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: