The average kinetic energy (\( KE \)) of gas molecules is directly proportional to the absolute temperature (\( T \)) and is given by: \[ KE = \frac{3}{2} k T, \] where \( k \) is Boltzmann's constant. \bigskip
Step 1: Initial kinetic energy at \( 27^\circ \text{C} \). The absolute temperature at \( 27^\circ \text{C} \) is: \[ T_1 = 27 + 273 = 300 \, \text{K}. \]
Step 2: New temperature for double kinetic energy. If the kinetic energy becomes double: \[ KE_2 = 2 \cdot KE_1. \] Since \( KE \propto T \): \[ T_2 = 2 \cdot T_1 = 2 \cdot 300 = 600 \, \text{K}. \] Convert \( T_2 \) to Celsius: \[ T_2 = 600 - 273 = 327^\circ \text{C}. \]
Final Answer: The temperature is: \[ \boxed{327^\circ \text{C}}. \]

Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to: