The average kinetic energy (\( KE \)) of gas molecules is directly proportional to the absolute temperature (\( T \)) and is given by: \[ KE = \frac{3}{2} k T, \] where \( k \) is Boltzmann's constant. \bigskip
Step 1: Initial kinetic energy at \( 27^\circ \text{C} \). The absolute temperature at \( 27^\circ \text{C} \) is: \[ T_1 = 27 + 273 = 300 \, \text{K}. \]
Step 2: New temperature for double kinetic energy. If the kinetic energy becomes double: \[ KE_2 = 2 \cdot KE_1. \] Since \( KE \propto T \): \[ T_2 = 2 \cdot T_1 = 2 \cdot 300 = 600 \, \text{K}. \] Convert \( T_2 \) to Celsius: \[ T_2 = 600 - 273 = 327^\circ \text{C}. \]
Final Answer: The temperature is: \[ \boxed{327^\circ \text{C}}. \]
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to
