The problem requires us to find the sum of a series given by:
\[ \frac{1}{1 - 3 \cdot 1^2 + 1^4} + \frac{2}{1 - 3 \cdot 2^2 + 2^4} + \frac{3}{1 - 3 \cdot 3^2 + 3^4} + \ldots \text{ up to 10 terms} \]
Let's start by simplifying each term in the series:
Substituting \(n = 1\), \(n = 2\), ..., up to \(n = 10\), we get:
Now, the series becomes:
\[ -1 + \frac{2}{5} + \frac{3}{55} + \frac{4}{209} + \frac{5}{551} + \frac{6}{1189} + \frac{7}{2255} + \frac{8}{3905} + \frac{9}{6319} + \frac{10}{9701} \]
To find the sum of these terms, add them accordingly:
\[ S = -1 + \frac{2}{5} + \frac{3}{55} + \frac{4}{209} + \frac{5}{551} + \frac{6}{1189} + \frac{7}{2255} + \frac{8}{3905} + \frac{9}{6319} + \frac{10}{9701} \]
Calculation leads to an approximate result for the sum:
Therefore, the correct answer is: \(-\frac{55}{109}\)
General term of the sequence,
$T_r = \frac{r}{1 - 3r^2 + r^4}$
$T_r = \frac{r}{r^4 - 3r^2 + 1 - r^2}$
$T_r = \frac{r}{(r^2 - 1)^2 - r^2}$
$T_r = \frac{r}{(r^2 - r - 1)(r^2 + r - 1)}$
$T_r = \frac{1}{2} \left[ \frac{1}{(r^2 - r - 1)} - \frac{1}{(r^2 + r - 1)} \right]$
Sum of 10 terms,
$\sum_{r=1}^{10} T_r = \frac{1}{2} \left[ \frac{1}{-1} - \frac{1}{109} \right] = \frac{55}{109}$
If the sum of the first 10 terms of the series \[ \frac{4 \cdot 1}{1 + 4 \cdot 1^4} + \frac{4 \cdot 2}{1 + 4 \cdot 2^4} + \frac{4 \cdot 3}{1 + 4 \cdot 3^4} + \ldots \] is \(\frac{m}{n}\), where \(\gcd(m, n) = 1\), then \(m + n\) is equal to _____.
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 