General term of the sequence,
$T_r = \frac{r}{1 - 3r^2 + r^4}$
$T_r = \frac{r}{r^4 - 3r^2 + 1 - r^2}$
$T_r = \frac{r}{(r^2 - 1)^2 - r^2}$
$T_r = \frac{r}{(r^2 - r - 1)(r^2 + r - 1)}$
$T_r = \frac{1}{2} \left[ \frac{1}{(r^2 - r - 1)} - \frac{1}{(r^2 + r - 1)} \right]$
Sum of 10 terms,
$\sum_{r=1}^{10} T_r = \frac{1}{2} \left[ \frac{1}{-1} - \frac{1}{109} \right] = \frac{55}{109}$
If \(\sum\)\(_{r=1}^n T_r\) = \(\frac{(2n-1)(2n+1)(2n+3)(2n+5)}{64}\) , then \( \lim_{n \to \infty} \sum_{r=1}^n \frac{1}{T_r} \) is equal to :