Step 1: Equation of the line and point.
The line is given by:
\[
L: \frac{x+1}{3} = \frac{y+3}{5} = \frac{z+5}{7}
\]
The point \( P = \left( \frac{15}{7}, \frac{32}{7}, 7 \right) \).
Step 2: Find the coordinates of point Q.
Let \( Q \) be the point on the line \( L \), and assume the parametric coordinates for \( Q \) are:
\[
Q: \left( \lambda + \frac{15}{7}, 4\lambda + \frac{32}{7}, 7\lambda + 7 \right)
\]
Step 3: Use the condition that point \( Q \) lies on the line \( L \).
The coordinates of \( Q \) should satisfy the line equation. Using the first equation \( \frac{x+1}{3} = \frac{y+3}{5} = \frac{z+5}{7} \), we find:
\[
\frac{\lambda + \frac{15}{7} + 1}{3} = \frac{4\lambda + \frac{32}{7} + 3}{5} = \frac{7\lambda + 7 + 5}{7}
\]
\[
\Rightarrow 7\lambda + 22 = 21\lambda + 36
\]
\[
\Rightarrow \lambda = -1
\]
Step 4: Coordinates of point \( Q \).
Substitute \( \lambda = -1 \) into the parametric form of \( Q \):
\[
Q = \left( \frac{8}{7}, 4, 0 \right)
\]
Step 5: Find the distance \( PQ \).
The distance between points \( P \left( \frac{15}{7}, \frac{32}{7}, 7 \right) \) and \( Q \left( \frac{8}{7}, 4, 0 \right) \) is given by:
\[
PQ = \sqrt{\left( \frac{15}{7} - \frac{8}{7} \right)^2 + \left( \frac{32}{7} - 4 \right)^2 + (7 - 0)^2}
\]
\[
PQ = \sqrt{\left( \frac{7}{7} \right)^2 + \left( \frac{32}{7} - \frac{28}{7} \right)^2 + 7^2}
\]
\[
PQ = \sqrt{1^2 + \left( \frac{4}{7} \right)^2 + 49}
\]
\[
PQ = \sqrt{1 + \frac{16}{49} + 49} = \sqrt{\frac{65}{49} + 49}
\]
\[
PQ = \sqrt{\frac{65 + 2401}{49}} = \sqrt{\frac{2466}{49}} = \sqrt{66}
\]
\[
\Rightarrow PQ^2 = 66
\]