For \(a, b \in \mathbb{Z}\) and \(|a - b| \leq 10\), let the angle between the plane \(P: ax + y - z = b\) and the line \(L: x - 1 = a - y = z + 1\) be \(\cos^{-1}\left(\frac{1}{3}\right)\). If the distance of the point \((6, -6, 4)\) from the plane \(P\) is \(3\sqrt{6}\), then \(a^4 + b^2\) is equal to:
The angle between the plane \( P: ax + y - z = b \) and the line \( L: x - 1 = a - y = z + 1 \) is given by:
\[ \cos\theta = \frac{1}{3}. \]
Thus:
\[ \sin\theta = \sqrt{1 - \cos^2\theta} = \sqrt{1 - \frac{1}{9}} = \sqrt{\frac{8}{9}} = \frac{2\sqrt{2}}{3}. \]
The sine of the angle can also be expressed as:
\[ \sin\theta = \frac{|a \cdot 1 + 1 \cdot (-1) + (-1) \cdot 1|}{\sqrt{a^2 + 1 + 1} \cdot \sqrt{1^2 + (-1)^2 + 1^2}}. \]
Substitute \( \sin\theta = \frac{2\sqrt{2}}{3} \):
\[ \frac{|a - 2|}{\sqrt{a^2 + 2} \cdot \sqrt{3}} = \frac{2\sqrt{2}}{3}. \]
Simplify:
\[ |a - 2| = 2\sqrt{2} \cdot \sqrt{a^2 + 2}. \]
Square both sides:
\[ (a - 2)^2 = 8(a^2 + 2). \]
Expand and simplify:
\[ a^2 - 4a + 4 = 8a^2 + 16. \]
\[ 7a^2 + 4a + 12 = 0. \]
Solve this quadratic equation:
\[ a = -2, \quad a = -\frac{6}{7} \quad (\text{Reject } a \notin \mathbb{Z}). \]
Thus, \( a = -2 \).
Next, find \( b \) using the distance formula. The distance of the point \( (6, -6, 4) \) from the plane \( P \) is given by:
\[ \frac{|a(6) + (-6) - 4 - b|}{\sqrt{a^2 + 1 + 1}} = 3\sqrt{6}. \]
Substitute \( a = -2 \):
\[ \frac{|(-2)(6) + (-6) - 4 - b|}{\sqrt{4 + 2}} = 3\sqrt{6}. \]
Simplify:
\[ \frac{|-12 - 6 - 4 - b|}{\sqrt{6}} = 3\sqrt{6}. \]
\[ \frac{|b + 22|}{\sqrt{6}} = 3\sqrt{6}. \]
Solve for \( b \):
\[ |b + 22| = 18. \]
\[ b = -4 \quad \text{(as \(|a - b| \leq 10\))}. \]
Finally, calculate \( a^4 + b^2 \):
\[ a^4 + b^2 = (-2)^4 + (-4)^2 = 16 + 16 = 32. \]
Final Answer:
\[ 32 \, (\text{Option 2}). \]
Let P₁ be the plane 3x-y-7z = 11 and P₂ be the plane passing through the points (2,-1,0), (2,0,-1), and (5,1,1). If the foot of the perpendicular drawn from the point (7,4,-1) on the line of intersection of the planes P₁ and P₂ is (α, β, γ), then a + ẞ+ y is equal to