Question:

For \(a, b \in \mathbb{Z}\) and \(|a - b| \leq 10\), let the angle between the plane \(P: ax + y - z = b\) and the line \(L: x - 1 = a - y = z + 1\) be \(\cos^{-1}\left(\frac{1}{3}\right)\). If the distance of the point \((6, -6, 4)\) from the plane \(P\) is \(3\sqrt{6}\), then \(a^4 + b^2\) is equal to:

Show Hint

Always verify integer solutions carefully when working with constraints like \(|a - b| \leq 10\) and ensure all calculations satisfy the problem's conditions.
Updated On: Mar 22, 2025
  • 25
  • 32
  • 48
  • 85
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

The angle between the plane \( P: ax + y - z = b \) and the line \( L: x - 1 = a - y = z + 1 \) is given by:

\[ \cos\theta = \frac{1}{3}. \]

Thus:

\[ \sin\theta = \sqrt{1 - \cos^2\theta} = \sqrt{1 - \frac{1}{9}} = \sqrt{\frac{8}{9}} = \frac{2\sqrt{2}}{3}. \]

The sine of the angle can also be expressed as:

\[ \sin\theta = \frac{|a \cdot 1 + 1 \cdot (-1) + (-1) \cdot 1|}{\sqrt{a^2 + 1 + 1} \cdot \sqrt{1^2 + (-1)^2 + 1^2}}. \]

Substitute \( \sin\theta = \frac{2\sqrt{2}}{3} \):

\[ \frac{|a - 2|}{\sqrt{a^2 + 2} \cdot \sqrt{3}} = \frac{2\sqrt{2}}{3}. \]

Simplify:

\[ |a - 2| = 2\sqrt{2} \cdot \sqrt{a^2 + 2}. \]

Square both sides:

\[ (a - 2)^2 = 8(a^2 + 2). \]

Expand and simplify:

\[ a^2 - 4a + 4 = 8a^2 + 16. \]

\[ 7a^2 + 4a + 12 = 0. \]

Solve this quadratic equation:

\[ a = -2, \quad a = -\frac{6}{7} \quad (\text{Reject } a \notin \mathbb{Z}). \]

Thus, \( a = -2 \).

Next, find \( b \) using the distance formula. The distance of the point \( (6, -6, 4) \) from the plane \( P \) is given by:

\[ \frac{|a(6) + (-6) - 4 - b|}{\sqrt{a^2 + 1 + 1}} = 3\sqrt{6}. \]

Substitute \( a = -2 \):

\[ \frac{|(-2)(6) + (-6) - 4 - b|}{\sqrt{4 + 2}} = 3\sqrt{6}. \]

Simplify:

\[ \frac{|-12 - 6 - 4 - b|}{\sqrt{6}} = 3\sqrt{6}. \]

\[ \frac{|b + 22|}{\sqrt{6}} = 3\sqrt{6}. \]

Solve for \( b \):

\[ |b + 22| = 18. \]

\[ b = -4 \quad \text{(as \(|a - b| \leq 10\))}. \]

Finally, calculate \( a^4 + b^2 \):

\[ a^4 + b^2 = (-2)^4 + (-4)^2 = 16 + 16 = 32. \]

Final Answer:

\[ 32 \, (\text{Option 2}). \]

Was this answer helpful?
1
0

Top Questions on Distance of a Point from a Plane

View More Questions