\(CoCl_3⋅4NH_3 \xrightarrow{\text {excess} \ AgNO_3 } [Co(NH_3)_4⋅Cl_2]+AgCl\)
\(NiCl_2⋅6H_2O\xrightarrow{\text {excess} \ AgNO_3 }[Ni(H_2O)_6]_2+ +2AgCl\)
\(PtCl_4⋅2HCl→[PtCl_6]^{4−} + \text {No AgCl ppt}\)
\([Ni^{2+}(H_2O)_6]=d^8=t_2g^6 e^2_g=2\) unpaired~electrons
Magnetic moment,
\(=\sqrt {2(2+2)}\)
\(=\sqrt 8\)
\(≈3\)
So, the answer is \(3\).
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
Resonance in X$_2$Y can be represented as
The enthalpy of formation of X$_2$Y is 80 kJ mol$^{-1}$, and the magnitude of resonance energy of X$_2$Y is:
A coordination compound holds a central metal atom or ion surrounded by various oppositely charged ions or neutral molecules. These molecules or ions are re-bonded to the metal atom or ion by a coordinate bond.
A coordination entity composes of a central metal atom or ion bonded to a fixed number of ions or molecules.
A molecule, ion, or group which is bonded to the metal atom or ion in a complex or coordination compound by a coordinate bond is commonly called a ligand. It may be either neutral, positively, or negatively charged.