We are given the matrix \( A = \begin{pmatrix} 2 & 3 \\ x & y \end{pmatrix} \) and the eigenvalues of \( A \) are \( 4 \) and \( 8 \). To find the values of \( x \) and \( y \), we use the fact that the eigenvalues are the solutions to the characteristic equation: \[ \det(A - \lambda I_2) = 0 \] where \( \lambda \) is the eigenvalue and \( I_2 \) is the \( 2 \times 2 \) identity matrix.
Step 1: Write the characteristic equation
The characteristic equation is given by: \[ \det\left( \begin{pmatrix} 2 & 3 \\ x & y \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right) = 0 \] This simplifies to: \[ \det\begin{pmatrix} 2 - \lambda & 3 \\ x & y - \lambda \end{pmatrix} = 0 \] The determinant of a \( 2 \times 2 \) matrix is calculated as: \[ (2 - \lambda)(y - \lambda) - 3x = 0 \] Expanding this, we get: \[ (2 - \lambda)(y - \lambda) - 3x = 2y - 2\lambda - \lambda y + \lambda^2 - 3x = 0 \]
Step 2: Use the known eigenvalues
The eigenvalues are \( \lambda = 4 \) and \( \lambda = 8 \). Substituting these values one by one into the equation: - For \( \lambda = 4 \): \[ (2 - 4)(y - 4) - 3x = 0 \quad \Rightarrow \quad -2(y - 4) - 3x = 0 \quad \Rightarrow \quad -2y + 8 - 3x = 0 \] \[ 3x + 2y = 8 \] - For \( \lambda = 8 \): \[ (2 - 8)(y - 8) - 3x = 0 \quad \Rightarrow \quad -6(y - 8) - 3x = 0 \quad \Rightarrow \quad -6y + 48 - 3x = 0 \] \[ 3x + 6y = 48 \]
Step 3: Solve the system of equations
We now have the system of linear equations: \[ 3x + 2y = 8 \quad \text{(1)} \] \[ 3x + 6y = 48 \quad \text{(2)} \] Subtract equation (1) from equation (2): \[ (3x + 6y) - (3x + 2y) = 48 - 8 \] \[ 4y = 40 \quad \Rightarrow \quad y = 10 \] Substitute \( y = 10 \) into equation (1): \[ 3x + 2(10) = 8 \quad \Rightarrow \quad 3x + 20 = 8 \quad \Rightarrow \quad 3x = -12 \quad \Rightarrow \quad x = -4 \]
\[ \boxed{x = -4, y = 10} \]
If $ A = \begin{pmatrix} 2 & 2 + p & 2 + p + q \\ 4 & 6 + 2p & 8 + 3p + 2q \\ 6 & 12 + 3p & 20 + 6p + 3q \end{pmatrix} $, then the value of $ \det(\text{adj}(\text{adj}(3A))) = 2^m \cdot 3^n $, then $ m + n $ is equal to:
A settling chamber is used for the removal of discrete particulate matter from air with the following conditions. Horizontal velocity of air = 0.2 m/s; Temperature of air stream = 77°C; Specific gravity of particle to be removed = 2.65; Chamber length = 12 m; Chamber height = 2 m; Viscosity of air at 77°C = 2.1 × 10\(^{-5}\) kg/m·s; Acceleration due to gravity (g) = 9.81 m/s²; Density of air at 77°C = 1.0 kg/m³; Assume the density of water as 1000 kg/m³ and Laminar condition exists in the chamber.
The minimum size of particle that will be removed with 100% efficiency in the settling chamber (in $\mu$m is .......... (round off to one decimal place).