Remember that the relationship between rms speed and average speed for molecules can involve constants such as \( \pi \), and care should be taken when substituting numerical values.
The relationship between rms speed \( v_\text{rms} \), average speed \( v \), and \( x \) is given as: \[ v_\text{rms} = \left( 1 + \frac{5}{x} \right)^{\frac{1}{2}} v. \]
From the kinetic theory of gases, the rms speed \( v_\text{rms} \) and average speed \( v \) are related as: \[ v_\text{rms} = \sqrt{\frac{3k_BT}{m}}, \quad v = \sqrt{\frac{8k_BT}{\pi m}}. \]
Taking the ratio: \[ \frac{v_\text{rms}}{v} = \sqrt{\frac{3}{8/\pi}} = \sqrt{\frac{3\pi}{8}}. \]
Substitute \( \pi = \frac{22}{7} \): \[ \frac{v_\text{rms}}{v} = \sqrt{\frac{3 \times \frac{22}{7}}{8}} = \sqrt{\frac{66}{56}} = \sqrt{\frac{33}{28}}. \]
Equating this to the given relation: \[ \sqrt{\frac{33}{28}} = \left( 1 + \frac{5}{x} \right)^{\frac{1}{2}}. \]
Square both sides: \[ \frac{33}{28} = 1 + \frac{5}{x}. \]
Simplify: \[ \frac{33}{28} - 1 = \frac{5}{x}. \]
\[ \frac{5}{28} = \frac{5}{x}. \]
Solve for \( x \): \[ x = 28. \]
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is:
The velocity (v) - time (t) plot of the motion of a body is shown below :

The acceleration (a) - time(t) graph that best suits this motion is :
A wheel of a bullock cart is rolling on a level road, as shown in the figure below. If its linear speed is v in the direction shown, which one of the following options is correct (P and Q are any highest and lowest points on the wheel, respectively) ?

A(g) $ \rightarrow $ B(g) + C(g) is a first order reaction.
The reaction was started with reactant A only. Which of the following expression is correct for rate constant k ?
$\mathrm{KMnO}_{4}$ acts as an oxidising agent in acidic medium. ' X ' is the difference between the oxidation states of Mn in reactant and product. ' Y ' is the number of ' d ' electrons present in the brown red precipitate formed at the end of the acetate ion test with neutral ferric chloride. The value of $\mathrm{X}+\mathrm{Y}$ is _______ .