Remember that the relationship between rms speed and average speed for molecules can involve constants such as \( \pi \), and care should be taken when substituting numerical values.
The relationship between rms speed \( v_\text{rms} \), average speed \( v \), and \( x \) is given as: \[ v_\text{rms} = \left( 1 + \frac{5}{x} \right)^{\frac{1}{2}} v. \]
From the kinetic theory of gases, the rms speed \( v_\text{rms} \) and average speed \( v \) are related as: \[ v_\text{rms} = \sqrt{\frac{3k_BT}{m}}, \quad v = \sqrt{\frac{8k_BT}{\pi m}}. \]
Taking the ratio: \[ \frac{v_\text{rms}}{v} = \sqrt{\frac{3}{8/\pi}} = \sqrt{\frac{3\pi}{8}}. \]
Substitute \( \pi = \frac{22}{7} \): \[ \frac{v_\text{rms}}{v} = \sqrt{\frac{3 \times \frac{22}{7}}{8}} = \sqrt{\frac{66}{56}} = \sqrt{\frac{33}{28}}. \]
Equating this to the given relation: \[ \sqrt{\frac{33}{28}} = \left( 1 + \frac{5}{x} \right)^{\frac{1}{2}}. \]
Square both sides: \[ \frac{33}{28} = 1 + \frac{5}{x}. \]
Simplify: \[ \frac{33}{28} - 1 = \frac{5}{x}. \]
\[ \frac{5}{28} = \frac{5}{x}. \]
Solve for \( x \): \[ x = 28. \]
The velocity (v) - time (t) plot of the motion of a body is shown below :
The acceleration (a) - time(t) graph that best suits this motion is :
A wheel of a bullock cart is rolling on a level road, as shown in the figure below. If its linear speed is v in the direction shown, which one of the following options is correct (P and Q are any highest and lowest points on the wheel, respectively) ?
Electrolysis of 600 mL aqueous solution of NaCl for 5 min changes the pH of the solution to 12. The current in Amperes used for the given electrolysis is ….. (Nearest integer).
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}