A wheel of a bullock cart is rolling on a level road, as shown in the figure below. If its linear speed is v in the direction shown, which one of the following options is correct (P and Q are any highest and lowest points on the wheel, respectively) ?
Step 1: Understand Rolling Motion
In rolling motion, a point on the rim of the wheel has both rotational and translational motion. The velocities due to both these motions add vectorially.
Step 2: Analyze the Velocity at Points P and Q
Point P is at the top of the wheel. Its velocity is the sum of the linear speed (v) of the wheel and the rotational speed (v).
Point Q is at the bottom of the wheel, where the linear speed (v) and rotational speed (-v) cancel out.
Step 3: Calculate Velocities
Velocity at P:
$$ v_P = v + v = 2v $$
Velocity at Q:
$$ v_Q = v - v = 0 $$
Step 4: Conclusion
Point P moves faster than Point Q, and Point Q has zero velocity.
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is:
A sphere of radius R is cut from a larger solid sphere of radius 2R as shown in the figure. The ratio of the moment of inertia of the smaller sphere to that of the rest part of the sphere about the Y-axis is :
Predict the major product $ P $ in the following sequence of reactions:
(i) HBr, benzoyl peroxide
(ii) KCN
(iii) Na(Hg), $C_{2}H_{5}OH$
AB is a part of an electrical circuit (see figure). The potential difference \(V_A - V_B\), at the instant when current \(i = 2\) A and is increasing at a rate of 1 amp/second is: