Step 1: Write the first three terms of the AP:
\[
a_1 = \sqrt{27}, \quad a_2 = \sqrt{75}, \quad a_3 = \sqrt{147}
\]
Step 2: Simplify each square root in terms of \( \sqrt{3} \):
\[
\sqrt{27} = \sqrt{3 \times 9} = 3\sqrt{3}, \\
\sqrt{75} = \sqrt{3 \times 25} = 5\sqrt{3}, \\
\sqrt{147} = \sqrt{3 \times 49} = 7\sqrt{3}
\]
Step 3: Now rewrite the sequence:
\[
a_1 = 3\sqrt{3}, \quad a_2 = 5\sqrt{3}, \quad a_3 = 7\sqrt{3}
\]
Step 4: Find the common difference:
\[
d = a_2 - a_1 = 5\sqrt{3} - 3\sqrt{3} = 2\sqrt{3}
\]
Step 5: Use the nth term formula of AP:
\[
T_n = a + (n - 1)d
\]
Step 6: Put values to find 6th term:
\[
T_6 = a + 5d = 3\sqrt{3} + 5 \cdot 2\sqrt{3} = 3\sqrt{3} + 10\sqrt{3} = 13\sqrt{3}
\]
Step 7: Convert back to square root form:
\[
T_6 = 13\sqrt{3} = \sqrt{(13\sqrt{3})^2} = \sqrt{169 \cdot 3} = \sqrt{507}
\]
\[
\Rightarrow \boxed{T_6 = \sqrt{507}}
\]