Question:

If \( \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0 \), \( |\overrightarrow{a}| = \sqrt{37} \), \( |\overrightarrow{b}| = 3 \), and \( |\overrightarrow{c}| = 4 \), then the angle between \( \overrightarrow{b} \) and \( \overrightarrow{c} \) is:

Show Hint

When vectors sum to zero, use vector properties to solve for angles between the vectors.
Updated On: Jun 16, 2025
  • \( \frac{\pi}{6} \)
  • \( \frac{\pi}{4} \)
  • \( \frac{\pi}{3} \)
  • \( \frac{\pi}{2} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Using the vector identity \( \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0 \), we find that \[ \overrightarrow{a} = -(\overrightarrow{b} + \overrightarrow{c}). \] The angle between \( \overrightarrow{b} \) and \( \overrightarrow{c} \) can be calculated using the dot product: \[ |\overrightarrow{b}| |\overrightarrow{c}| \cos \theta = \overrightarrow{b} \cdot \overrightarrow{c}. \] The angle \( \theta \) is \( \frac{\pi}{3} \).
Was this answer helpful?
0
0

Questions Asked in CBSE CLASS XII exam

View More Questions