The given equation is:
\[
(4 - \sqrt{3}) \sin x - 2\sqrt{3} \cos^2 x = \frac{-4}{1 + \sqrt{3}}
\]
Rationalize the right-hand side:
\[
\frac{-4}{1 + \sqrt{3}} = \frac{-4(1 - \sqrt{3})}{(1 + \sqrt{3})(1 - \sqrt{3})} = \frac{-4(1 - \sqrt{3})}{1 - 3} = \frac{-4(1 - \sqrt{3})}{-2} = 2(1 - \sqrt{3}) = 2 - 2\sqrt{3}
\]
Substitute \( \cos^2 x = 1 - \sin^2 x \) into the equation:
\[
(4 - \sqrt{3}) \sin x - 2\sqrt{3} (1 - \sin^2 x) = 2 - 2\sqrt{3}
\]
\[
(4 - \sqrt{3}) \sin x - 2\sqrt{3} + 2\sqrt{3} \sin^2 x = 2 - 2\sqrt{3}
\]
\[
2\sqrt{3} \sin^2 x + (4 - \sqrt{3}) \sin x - 2 = 0
\]
This is a quadratic equation in \( \sin x \). Let \( y = \sin x \):
\[
2\sqrt{3} y^2 + (4 - \sqrt{3}) y - 2 = 0
\]
Using the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \):
\[
y = \frac{-(4 - \sqrt{3}) \pm \sqrt{(4 - \sqrt{3})^2 - 4(2\sqrt{3})(-2)}}{2(2\sqrt{3})}
\]
\[
y = \frac{-4 + \sqrt{3} \pm \sqrt{16 - 8\sqrt{3} + 3 + 16\sqrt{3}}}{4\sqrt{3}}
\]
\[
y = \frac{-4 + \sqrt{3} \pm \sqrt{19 + 8\sqrt{3}}}{4\sqrt{3}}
\]
Note that \( 19 + 8\sqrt{3} = 16 + 3 + 2 \cdot 4 \cdot \sqrt{3} = (4 + \sqrt{3})^2 \).
\[
y = \frac{-4 + \sqrt{3} \pm (4 + \sqrt{3})}{4\sqrt{3}}
\]
Two possible values for \( y = \sin x \):
\[
\sin x = \frac{-4 + \sqrt{3} + 4 + \sqrt{3}}{4\sqrt{3}} = \frac{2\sqrt{3}}{4\sqrt{3}} = \frac{1}{2}
\]
\[
\sin x = \frac{-4 + \sqrt{3} - 4 - \sqrt{3}}{4\sqrt{3}} = \frac{-8}{4\sqrt{3}} = \frac{-2}{\sqrt{3}}
\]
Since \( -1 \le \sin x \le 1 \), \( \sin x = \frac{-2}{\sqrt{3}} \) is not possible.
So, we need to find the number of solutions for \( \sin x = \frac{1}{2} \) in the interval \( \left[-2\pi, \frac{5\pi}{2}\right] \).
The general solutions are \( x = n\pi + (-1)^n \frac{\pi}{6} \).
For \( n = -2 \): \( x = -2\pi + \frac{\pi}{6} = -\frac{11\pi}{6} \)
For \( n = -1 \): \( x = -\pi - \frac{\pi}{6} = -\frac{7\pi}{6} \)
For \( n = 0 \): \( x = \frac{\pi}{6} \)
For \( n = 1 \): \( x = \pi - \frac{\pi}{6} = \frac{5\pi}{6} \)
For \( n = 2 \): \( x = 2\pi + \frac{\pi}{6} = \frac{13\pi}{6} \)
For \( n = 3 \): \( x = 3\pi - \frac{\pi}{6} = \frac{17\pi}{6}>\frac{15\pi}{6} = \frac{5\pi}{2} \)
The solutions in the given interval are \( -\frac{11\pi}{6}, -\frac{7\pi}{6}, \frac{\pi}{6}, \frac{5\pi}{6}, \frac{13\pi}{6} \).
There are 5 solutions.