To solve the problem, we need to determine the order and degree of the given differential equation:
\( \frac{d}{dx} \left( \left( \frac{dy}{dx} \right)^3 \right) = 0 \)
1. Simplify the Differential Equation:
Let us first simplify the expression:
Let \( u = \left( \frac{dy}{dx} \right)^3 \), then the equation becomes:
\( \frac{du}{dx} = 0 \)
That implies \( u \) is constant, so:
\( \left( \frac{dy}{dx} \right)^3 = C \), where \( C \) is constant
We were given:
\( \frac{d}{dx} \left( \left( \frac{dy}{dx} \right)^3 \right) = 0 \)
We need to look at the highest order derivative involved in the equation as written — the derivative is acting on a power of \( \frac{dy}{dx} \), making the expression effectively include a second derivative when expanded.
Differentiating: \( \frac{d}{dx} \left( \left( \frac{dy}{dx} \right)^3 \right) = 3 \left( \frac{dy}{dx} \right)^2 \cdot \frac{d^2y}{dx^2} \)
So, the highest derivative is \( \frac{d^2y}{dx^2} \), which means:
Order (p) = 2
The equation is polynomial in its highest order derivative (linear in \( \frac{d^2y}{dx^2} \)), so:
Degree (q) = 1
2. Final Calculation:
\( p - q = 2 - 1 = 1 \)
Final Answer:
The value of \( p - q \) is 1.
Let \( f : [1, \infty) \to [2, \infty) \) be a differentiable function. If
\( 10 \int_{1}^{x} f(t) \, dt = 5x f(x) - x^5 - 9 \) for all \( x \ge 1 \), then the value of \( f(3) \) is ______.
| Particulars | 31-03-2024 (₹) | 31-03-2023 (₹) |
|---|---|---|
| Equity Share Capital | 12,00,000 | 8,00,000 |
| 11% Debentures | 3,00,000 | 4,00,000 |
| Securities Premium | 1,40,000 | 1,00,000 |