We are given a three-digit number \(x = \overline{xyz} \), where \( x, y, z \) are digits. The condition is: \[ x + y + z = 15 \] Additionally, since \( x \) is the hundreds digit, \( x \) must satisfy \( 2 \leq x \leq 9 \).
Step 2: Identify Possible Combinations for Each \( x \)The total number of valid combinations is: \[ 6 + 7 + 8 + 9 + 10 + 9 + 8 + 7 = 64 \]
Final Answer: 64Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: