To determine the number of complexes with no electrons in the \(t_2\) orbital, analyze each complex and its oxidation state, electronic configuration, and crystal field splitting.
Step 1: Analyze each complex
1.\(\text{TiCl}_4\):
- Oxidation state of Ti: \(+4 \, (\text{Ti}^{4+})\).
- Electronic configuration of \(\text{Ti}^{4+}\): \(3d^0\).
- No electrons in \(t_2\) orbitals.
2.\([\text{MnO}_4]^-\):
- Oxidation state of Mn: \(+7 \, (\text{Mn}^{7+})\).
- Electronic configuration of \(\text{Mn}^{7+}\): \(3d^0\).
- No electrons in \(t_2\) orbitals.
3.\([\text{FeO}_4]^{2-}\):
- Oxidation state of Fe: \(+6 \, (\text{Fe}^{6+})\).
- Electronic configuration of \(\text{Fe}^{6+}\): \(3d^0\).
- No electrons in \(t_2\) orbitals.
4.\([\text{FeCl}_4]^-\):
- Oxidation state of Fe: \(+2 \, (\text{Fe}^{2+})\).
- Electronic configuration of \(\text{Fe}^{2+}\): \(3d^6\).
- \(t_2\) orbitals are populated with electrons (\(t_2^3e^3\)).
5.\([\text{CoCl}_4]^{2-}\):
- Oxidation state of Co: \(+2 \, (\text{Co}^{2+})\).
- Electronic configuration of \(\text{Co}^{2+}\): \(3d^7\).
- \(t_2\) orbitals are populated with electrons (\(t_2^4e^3\)).
Step 2: Count complexes with no \(t_2\) electrons
- \(\text{TiCl}_4\), \([\text{MnO}_4]^-\), and \([\text{FeO}_4]^{2-}\) have no electrons in \(t_2\) orbitals.
- \([\text{FeCl}_4]^-\) and \([\text{CoCl}_4]^{2-}\) have electrons in \(t_2\) orbitals.
Conclusion:
The number of complexes with no electrons in the \(t_2\) orbital is:
\[3 \, (\text{TiCl}_4, \, [\text{MnO}_4]^-, \, [\text{FeO}_4]^{2-}).\]
Final Answer: (1).
Match List I with List II:
List I (Ion) | List II (Shape) |
---|---|
A. ICl2- | I. V-shape |
B. NH2- | II. Linear |
C. NH4+ | III. Tetrahedral |
D. [PtCl4]- | IV. Square planar |
Choose the correct answer from the options given below:
Arrange the increasing order of charges (molar conductivity) of the compounds used in Werner coordination theory