Question:

The matrix \( A = \begin{bmatrix} 3 & -1 & 1 \\ 1 & -5 & 1 \\ 1 & -1 & 3 \end{bmatrix} \) has eigenvalues 2, 3, 6 then the eigenvalues of \( A^4 \) are

Show Hint

To find the eigenvalues of \( A^n \), raise the eigenvalues of \( A \) to the power \( n \).
Updated On: May 5, 2025
  • \( 2, \frac{4}{3}, \frac{2}{3} \)
  • \( 2, 3, 6 \)
  • \( 8, 12, 24 \)
  • \( \frac{1}{2}, \frac{1}{3}, \frac{1}{6} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The eigenvalues of \( A^n \) are simply the eigenvalues of \( A \) raised to the power \( n \). For \( A^4 \), the eigenvalues are \( 2^4, 3^4, 6^4 \). Therefore, the eigenvalues of \( A^4 \) are \( 2, \frac{4}{3}, \frac{2}{3} \).
Was this answer helpful?
0
0