To find the eigenvalues of a matrix, we solve the characteristic equation: \[ \det(A - \lambda I) = 0 \] where \( A \) is the matrix, \( \lambda \) is the eigenvalue, and \( I \) is the identity matrix.
Step 1: Construct the matrix \( A - \lambda I \)
Given the matrix \( A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \), we subtract \( \lambda I \): \[ A - \lambda I = \begin{bmatrix} 1 - \lambda & 2 \\ 0 & 3 - \lambda \end{bmatrix} \] Step 2: Find the determinant of \( A - \lambda I \)
\[ \det(A - \lambda I) = (1 - \lambda)(3 - \lambda) - (0)(2) = (1 - \lambda)(3 - \lambda) \] Step 3: Solve the characteristic equation
\[ (1 - \lambda)(3 - \lambda) = 0 \Rightarrow \lambda = 1 \text{ or } \lambda = 3 \] Conclusion:
The eigenvalues of the matrix are 1 and 3.
The eigenvalues of the matrix

are \( \lambda_1, \lambda_2, \lambda_3 \). The value of \( \lambda_1 \lambda_2 \lambda_3 ( \lambda_1 + \lambda_2 + \lambda_3 ) \) is: