>
Exams
>
Mathematics
>
Laplace transforms
>
the laplace transform of e 2t cos sqrt 2 t is
Question:
The Laplace transform of \( e^{-2t} \cos(\sqrt{2} t) \) is .......
Show Hint
Use the Laplace transform shifting theorem: \( \mathcal{L}\{ e^{-at} f(t) \} = F(s + a) \), where \( F(s) \) is the Laplace of \( f(t) \).
AP PGECET - 2025
AP PGECET
Updated On:
Jun 20, 2025
\( \frac{s - 2}{(s - 2)^2 + 2},\ s > 2 \)
\( \frac{2}{(s + 2)^2 + 2},\ s > -2 \)
\( \frac{\sqrt{2}}{(s + 2)^2 + 2},\ s > -2 \)
\( \frac{s + 2}{(s + 2)^2 + 2},\ s > -2 \)
Hide Solution
Verified By Collegedunia
The Correct Option is
D
Solution and Explanation
We use the Laplace transform formula: \[ \mathcal{L} \{ e^{at} \cdot f(t) \} = F(s - a) \] Given: \[ f(t) = \cos(\sqrt{2}t), \mathcal{L}\{ \cos(bt) \} = \frac{s}{s^2 + b^2} \] So, \[ \mathcal{L}\{ \cos(\sqrt{2}t) \} = \frac{s}{s^2 + 2} \] Now for: \[ \mathcal{L}\{ e^{-2t} \cos(\sqrt{2}t) \} \] Using the shift property: \[ = \mathcal{L}\{ \cos(\sqrt{2}t) \}(s + 2) = \frac{s + 2}{(s + 2)^2 + 2} \] This is valid for \( s>-2 \).
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Laplace transforms
If \( F(s) \) denotes the Laplace transform of some function \( f(t) \), then the Laplace transform of \( e^{bt} f(t) \), where \( b \) is a real constant, is:
GATE PI - 2025
Engineering Mathematics
Laplace transforms
View Solution
Consider \( f(t) = \cos(at) \), where \( a \) is a real constant. The Laplace transform of \( f(t) \) is _________.
GATE NM - 2025
Engineering Mathematics
Laplace transforms
View Solution
Assuming \( s>|a| \); the Laplace transform of \( f(x) = \cosh(ax) \) is:
GATE ES - 2025
Engineering Mathematics
Laplace transforms
View Solution
The Laplace transform of \( \frac{s}{s^2 + a^2} \) is:
GATE AG - 2025
Engineering Mathematics
Laplace transforms
View Solution
If \( \mathcal{L}\{f(t)\} = \frac{1 - e^{-1/s}}{s} \), then \( \mathcal{L}\{e^{-t}f(3t)\} \) is
TS PGECET - 2024
Engineering Mathematics
Laplace transforms
View Solution
View More Questions
Questions Asked in AP PGECET exam
If \( A \) and \( B \) are two mutually exclusive events with \( P(B) \ne 1 \), then the conditional probability
\[ P(A \mid \overline{B}) = \,? \]
where \( \overline{B} \) is the complement of \( B \)
AP PGECET - 2025
Probability and Statistics
View Solution
If \( X \) is a continuous random variable with the probability density function
\[ f(x) = \begin{cases} cx^3, & 0 \le x \le 2 \\ 0, & \text{otherwise} \end{cases} \]
then
\( P\left( \frac{1}{2} < X < \frac{3}{2} \right) \)
is ..........
AP PGECET - 2025
Probability and Statistics
View Solution
The line integral of the vector field \( \vec{F} = x\hat{i} - 2y\hat{j} + z\hat{k} \) along the straight line path from the point \((-1,2,3)\) to \((2,3,5)\), is ..........
AP PGECET - 2025
Calculus
View Solution
Consider the improper integral \( I = \int_{2025}^{2030} \frac{1}{(x - 2025)^k} \, dx \), where \( k > 0 \). Which of the following is true for \( I \)?
AP PGECET - 2025
Calculus
View Solution
The eigenvalues of the matrix \( \begin{bmatrix} 2 & 1 - 2i \\ 1 + 2i & -2 \end{bmatrix} \) are ..........
AP PGECET - 2025
Matrix
View Solution
View More Questions