We use the Laplace transform formula:
\[
\mathcal{L} \{ e^{at} \cdot f(t) \} = F(s - a)
\]
Given:
\[
f(t) = \cos(\sqrt{2}t), \mathcal{L}\{ \cos(bt) \} = \frac{s}{s^2 + b^2}
\]
So,
\[
\mathcal{L}\{ \cos(\sqrt{2}t) \} = \frac{s}{s^2 + 2}
\]
Now for:
\[
\mathcal{L}\{ e^{-2t} \cos(\sqrt{2}t) \}
\]
Using the shift property:
\[
= \mathcal{L}\{ \cos(\sqrt{2}t) \}(s + 2) = \frac{s + 2}{(s + 2)^2 + 2}
\]
This is valid for \( s>-2 \).