We are given an improper integral:
\[
I = \int_{2025}^{2030} \frac{1}{(x - 2025)^k} \, dx
\]
Let \( u = x - 2025 ⇒ x = u + 2025 \), then when \( x = 2025 \), \( u = 0 \) and when \( x = 2030 \), \( u = 5 \).
So the integral becomes:
\[
I = \int_{0}^{5} \frac{1}{u^k} \, du
\]
This is an improper integral because the integrand becomes unbounded at \( u = 0 \). To analyze convergence at the lower limit, consider the behavior of the integral:
\[
\int_{0}^{5} \frac{1}{u^k} \, du
\]
This integral converges if and only if \( k<1 \), and diverges if \( k \geq 1 \).
Hence, the original integral \( I \) converges for \( k<1 \) and diverges for \( k \geq 1 \).