The eigenvalues of the matrix

are \( \lambda_1, \lambda_2, \lambda_3 \). The value of \( \lambda_1 \lambda_2 \lambda_3 ( \lambda_1 + \lambda_2 + \lambda_3 ) \) is:
The given matrix is a \( 3 \times 3 \) matrix:
\[ A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & -3 \end{bmatrix} \]
The determinant of the matrix can be used to calculate the product of the eigenvalues \( \lambda_1, \lambda_2, \lambda_3 \). After solving for the eigenvalues using the characteristic equation, we find:
\[ \lambda_1 = 5, \quad \lambda_2 = -3, \quad \lambda_3 = 1 \]
Next, we calculate the required expression:
\[ \lambda_1 \lambda_2 \lambda_3 ( \lambda_1 + \lambda_2 + \lambda_3 ) = 5 \times (-3) \times 1 \times (5 + (-3) + 1) \] \[ = (-15) \times 3 = -45 \]
Thus, the value is \( -45 \), and the correct answer is (B).
Let \[ A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & k & 0 \\ 3 & 0 & -1 \end{pmatrix}. \] If the eigenvalues of \( A \) are -2, 1, and 2, then the value of \( k \) is _.
(Answer in integer)