Question:

If \( X \) is a continuous random variable with the probability density function
\[ f(x) = \begin{cases} cx^3, & 0 \le x \le 2 \\ 0, & \text{otherwise} \end{cases} \] then \( P\left( \frac{1}{2} < X < \frac{3}{2} \right) \) is ..........

Show Hint

Always normalize the probability density function by ensuring the total area under the curve equals 1. Then use definite integration over the given range to find the required probability.
Updated On: Jun 20, 2025
  • \( \frac{5}{16} \)
  • \( \frac{1}{8} \)
  • \( \frac{5}{8} \)
  • \( \frac{1}{16} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

First, normalize the PDF to find the constant \( c \):
\[ \int_{0}^{2} cx^3 dx = 1 ⇒ c \int_{0}^{2} x^3 dx = 1 ⇒ c \left[ \frac{x^4}{4} \right]_{0}^{2} = 1 ⇒ c \cdot \frac{16}{4} = 1 ⇒ 4c = 1 ⇒ c = \frac{1}{4} \] Now compute the required probability: \[ P\left( \frac{1}{2} < X < \frac{3}{2} \right) = \int_{\frac{1}{2}}^{\frac{3}{2}} f(x) dx = \int_{\frac{1}{2}}^{\frac{3}{2}} \frac{1}{4} x^3 dx \] \[ = \frac{1}{4} \int_{\frac{1}{2}}^{\frac{3}{2}} x^3 dx = \frac{1}{4} \left[ \frac{x^4}{4} \right]_{\frac{1}{2}}^{\frac{3}{2}} = \frac{1}{4} \left( \frac{(3/2)^4}{4} - \frac{(1/2)^4}{4} \right) \] \[ = \frac{1}{4} \left( \frac{81/16}{4} - \frac{1/16}{4} \right) = \frac{1}{4} \cdot \left( \frac{80}{64} \right) = \frac{1}{4} \cdot \frac{5}{4} = \frac{5}{16} \]
Was this answer helpful?
0
0