To find the escape velocity on the moon in terms of the given escape velocity on the planet \(v\), let's use the formula for escape velocity:
\(v_{\text{escape}} = \sqrt{\frac{2GM}{R}}\)
where:
We are given:
If we denote the mass of the planet as \(M\) and the radius of the planet as \(R\), then:
The escape velocity on the planet is given by:
\(v = \sqrt{\frac{2GM}{R}}\)
For the moon, the escape velocity \(v_{\text{moon}}\) is:
\(v_{\text{moon}} = \sqrt{\frac{2G \cdot \frac{M}{144}}{\frac{R}{16}}}\)
Simplify the expression for the escape velocity on the moon:
\(v_{\text{moon}} = \sqrt{\frac{2G \cdot \frac{M}{144}}{\frac{R}{16}}} = \sqrt{\frac{2G \cdot M}{144 \cdot \frac{R}{16}}} = \sqrt{\frac{2G \cdot M \cdot 16}{144 \cdot R}}\)
\(v_{\text{moon}} = \sqrt{\frac{16}{144}} \cdot \sqrt{\frac{2G \cdot M}{R}} = \frac{1}{3} \cdot \sqrt{\frac{2G \cdot M}{R}}\)
Since \(\sqrt{\frac{2G \cdot M}{R}} = v\), we have:
\(v_{\text{moon}} = \frac{v}{3}\)
Thus, the escape velocity on the moon is \(\frac{v}{3}\). Therefore, the correct answer is:
\(\frac{v}{3}\)
The escape velocity \( v_{\text{escape}} \) for a celestial body is given by:
\[ v_{\text{escape}} = \sqrt{\frac{2GM}{R}}, \]where \( G \) is the gravitational constant, \( M \) is the mass of the body, and \( R \) is its radius.
Given that the escape velocity on the planet is \( v \):
\[ v = \sqrt{\frac{2GM}{R}}. \]For the moon:
Substitute these values into the escape velocity formula for the moon:
\[ v_{\text{moon}} = \sqrt{\frac{2G \cdot \frac{M}{144}}{\frac{R}{16}}} = \sqrt{\frac{2GM \cdot 16}{144R}} = \sqrt{\frac{2GM}{9R}} = \frac{1}{3} \sqrt{\frac{2GM}{R}} = \frac{v}{3}. \]Thus, the escape velocity on the moon is:
\[ \frac{v}{3}. \]Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: