The escape velocity \( v_{\text{escape}} \) for a celestial body is given by:
\[ v_{\text{escape}} = \sqrt{\frac{2GM}{R}}, \]where \( G \) is the gravitational constant, \( M \) is the mass of the body, and \( R \) is its radius.
Given that the escape velocity on the planet is \( v \):
\[ v = \sqrt{\frac{2GM}{R}}. \]For the moon:
Substitute these values into the escape velocity formula for the moon:
\[ v_{\text{moon}} = \sqrt{\frac{2G \cdot \frac{M}{144}}{\frac{R}{16}}} = \sqrt{\frac{2GM \cdot 16}{144R}} = \sqrt{\frac{2GM}{9R}} = \frac{1}{3} \sqrt{\frac{2GM}{R}} = \frac{v}{3}. \]Thus, the escape velocity on the moon is:
\[ \frac{v}{3}. \]