Using the Principle of Continuity and Torricelli’s Law
The equation for continuity is given by:
\[ A_1 v_1 = A_2 v_2 \]
Using Torricelli’s theorem:
\[ v = \sqrt{2gh} \]
The time to empty the tank is:
\[ t = -\frac{A}{a} \sqrt{2g} \int_0^h \frac{dh}{\sqrt{h}} \]
Case I: Tank 1
The time taken for Tank 1 to empty is:
\[ t_1 = \frac{2A}{a} \sqrt{2g} \sqrt{h} \]
Case II: Tank 2 (Connected to Pipe)
For Tank 2, the effective height is \( H + h \), so:
\[ t_2 = \frac{2A}{a} \sqrt{2g} \left( \sqrt{H + h} - \sqrt{H} \right) \]
Finding the Ratio \( \frac{t_1}{t_2} \)
Dividing equation (1) by equation (2):
\[ \frac{t_1}{t_2} = \frac{\sqrt{h}}{\sqrt{H + h} - \sqrt{H}} \]
Given \( H = \frac{16}{9} h \), we find:
\[ \sqrt{H} = \frac{4}{3} \sqrt{h}, \quad \sqrt{H + h} = \frac{5}{3} \sqrt{h} \]
Substituting into the ratio:
\[ \frac{t_1}{t_2} = \frac{\sqrt{h}}{\frac{5}{3} \sqrt{h} - \frac{4}{3} \sqrt{h}} \]
Simplifying:
\[ \frac{t_1}{t_2} = \frac{\sqrt{h}}{\frac{\sqrt{h}}{3}} = 3 \]
Final Answer: \( \frac{t_1}{t_2} = 3 \)
Let's re-examine the problem carefully to match the correct answer.
Given:
- Two identical tanks, each filled to height \(h\).
- Building height \(H = \frac{16}{9} h\).
- Tank 1 has a hole near the bottom open to atmosphere.
- Tank 2 has a hole connected to a pipe ending at ground level (height \(H\) below the hole).
- Times to empty tanks are \(t_1\) and \(t_2\). Find \(\frac{t_1}{t_2}\).
Step 1: Effective pressure heads:
- For tank 1:
\[
h_1 = h
\]
- For tank 2:
Pressure head is sum of water column height plus vertical drop of pipe:
\[
h_2 = h + H = h + \frac{16}{9} h = \frac{25}{9} h
\]
Step 2: Velocity of water outflow (Torricelli's law):
\[
v_1 = \sqrt{2 g h}
\]
\[
v_2 = \sqrt{2 g \frac{25}{9} h} = \frac{5}{3} \sqrt{2 g h}
\]
Step 3: Flow rate \(Q = A v\) (same hole radius \(A\)):
\[
Q_1 = A v_1 = A \sqrt{2 g h}
\]
\[
Q_2 = A v_2 = A \frac{5}{3} \sqrt{2 g h}
\]
Step 4: Time to empty tank, considering decreasing water height:
Since flow velocity depends on water height, apply Torricelli's equation to find time.
Step 5: Using Torricelli's formula for draining time:
For a tank draining through a small hole at bottom:
\[
t = \frac{A_{\text{tank}}}{A_{\text{hole}}} \sqrt{\frac{2}{g}} \int_0^h \frac{dh'}{\sqrt{h'}}
= \frac{2 A_{\text{tank}}}{A_{\text{hole}}} \sqrt{\frac{2h}{g}}
\]
Time is proportional to \(\sqrt{h}\).
Step 6: For tank 1:
\[
t_1 \propto \sqrt{h}
\]
For tank 2, the effective head at height \(h'\) is:
\[
h' + H
\]
Time to empty:
\[
t_2 \propto \int_0^h \frac{dh'}{\sqrt{h' + H}} = 2 \left( \sqrt{h + H} - \sqrt{H} \right)
\]
Step 7: Calculate ratio \(\frac{t_1}{t_2}\):
\[
t_1 \propto \sqrt{h}
\]
\[
t_2 \propto 2 \left( \sqrt{h + H} - \sqrt{H} \right)
\]
Using \(H = \frac{16}{9} h\), write in terms of \(h\):
\[
t_2 \propto 2 \left( \sqrt{h + \frac{16}{9} h} - \sqrt{\frac{16}{9} h} \right) = 2 \left( \sqrt{\frac{25}{9} h} - \frac{4}{3} \sqrt{h} \right)
\]
\[
= 2 \left( \frac{5}{3} \sqrt{h} - \frac{4}{3} \sqrt{h} \right) = 2 \times \frac{1}{3} \sqrt{h} = \frac{2}{3} \sqrt{h}
\]
Therefore,
\[
\frac{t_1}{t_2} = \frac{\sqrt{h}}{\frac{2}{3} \sqrt{h}} = \frac{3}{2}
\]
This gives \(\frac{t_1}{t_2} = 1.5\), which is still not 3.
Step 8: Correcting the approach:
Actually, because the water level in tank 2 sees a higher effective head (due to pipe exit at ground level), the flow velocity is greater, and tank 2 empties faster.
In fact, when tank 2 drains, the velocity at any height \(h'\) is:
\[
v = \sqrt{2g(h' + H)}
\]
Time to empty:
\[
t_2 = \frac{A_{\text{tank}}}{A_{\text{hole}}} \sqrt{\frac{2}{g}} \int_0^h \frac{dh'}{\sqrt{h' + H}} = \frac{A_{\text{tank}}}{A_{\text{hole}}} \sqrt{\frac{2}{g}} \times 2 \left( \sqrt{h + H} - \sqrt{H} \right)
\]
Similarly, for tank 1:
\[
t_1 = \frac{A_{\text{tank}}}{A_{\text{hole}}} \sqrt{\frac{2}{g}} \times 2 \sqrt{h}
\]
Ratio:
\[
\frac{t_1}{t_2} = \frac{\sqrt{h}}{\sqrt{h + H} - \sqrt{H}}
\]
Substitute \(H = \frac{16}{9} h\):
\[
\frac{t_1}{t_2} = \frac{\sqrt{h}}{\sqrt{h + \frac{16}{9} h} - \sqrt{\frac{16}{9} h}} = \frac{\sqrt{h}}{\sqrt{\frac{25}{9} h} - \frac{4}{3} \sqrt{h}} = \frac{\sqrt{h}}{\frac{5}{3} \sqrt{h} - \frac{4}{3} \sqrt{h}} = \frac{\sqrt{h}}{\frac{1}{3} \sqrt{h}} = 3
\]
Final Answer:
\[
\boxed{3}
\]