The equation for continuity is given by:
\[ A_1 v_1 = A_2 v_2 \]
Using Torricelli’s theorem:
\[ v = \sqrt{2gh} \]
The time to empty the tank is:
\[ t = -\frac{A}{a} \sqrt{2g} \int_0^h \frac{dh}{\sqrt{h}} \]
The time taken for Tank 1 to empty is:
\[ t_1 = \frac{2A}{a} \sqrt{2g} \sqrt{h} \]
For Tank 2, the effective height is \( H + h \), so:
\[ t_2 = \frac{2A}{a} \sqrt{2g} \left( \sqrt{H + h} - \sqrt{H} \right) \]
Dividing equation (1) by equation (2):
\[ \frac{t_1}{t_2} = \frac{\sqrt{h}}{\sqrt{H + h} - \sqrt{H}} \]
Given \( H = \frac{16}{9} h \), we find:
\[ \sqrt{H} = \frac{4}{3} \sqrt{h}, \quad \sqrt{H + h} = \frac{5}{3} \sqrt{h} \]
Substituting into the ratio:
\[ \frac{t_1}{t_2} = \frac{\sqrt{h}}{\frac{5}{3} \sqrt{h} - \frac{4}{3} \sqrt{h}} \]
Simplifying:
\[ \frac{t_1}{t_2} = \frac{\sqrt{h}}{\frac{\sqrt{h}}{3}} = 3 \]
\( \frac{t_1}{t_2} = 3 \)