1. The equation of the hyperbola is:
\[ \frac{x^2}{4} - \frac{y^2}{9} = 1. \]
2. The equation of the chord parallel to \(y = 2x\) is:
\[ y = 2x + c. \]
3. Using the midpoint formula for a hyperbola: - The midpoint satisfies the locus equation derived from substituting \(y = 2x + c\) into the hyperbola equation.
4. After simplification, the locus of the midpoint is:
\[ 9x - 8y = 0. \]
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $