If the inverse point of the point \( (-1, 1) \) with respect to the circle \( x^2 + y^2 - 2x + 2y - 1 = 0 \) is \( (p, q) \), then \( p^2 + q^2 = \)
A quantity \( X \) is given by: \[ X = \frac{\epsilon_0 L \Delta V}{\Delta t} \] where:
- \( \epsilon_0 \) is the permittivity of free space,
- \( L \) is the length,
- \( \Delta V \) is the potential difference,
- \( \Delta t \) is the time interval.
The dimension of \( X \) is the same as that of: