Given, equation of circle is $x^{2}+y^{2}+2 x-2 y-2=0$ $\Rightarrow (x+1)^{2}+(y-1)^{2}=4 $ $\therefore $ Centre $(-1,1)$ and radius $=2$ Let $(h, k)$ be the mid-point of chord.
From figure, $O P=\sqrt{(h+1)^{2}+(k-1)^{2}}$ In $\triangle O A P$, $\sin 45^{\circ}=\frac{O P}{O A}$ $\Rightarrow \frac{1}{\sqrt{2}}=\frac{\sqrt{(h+1)^{2}+(k-1)^{2}}}{2}$ On squaring both sides, we get $ (h+1)^{2}+(k-1)^{2}=2 $ $\Rightarrow h^{2}+k^{2}+2 h-2 k=0$ $\therefore$ Locus of $P$ will be $x^{2}+y^{2}+2 x-2 y=0$