If the equation of the circle whose radius is 3 units and which touches internally the circle $$ x^2 + y^2 - 4x - 6y - 12 = 0 $$ at the point $(-1, -1)$ is $$ x^2 + y^2 + px + qy + r = 0, $$ then $p + q - r$ is:
The plane $2x - y + 3z + 5 = 0$ is rotated through $90^\circ$ about its line of intersection with the plane $x + y + z = 1$. The equation of the plane in the new position is: