The locus of the point of intersection of the lines
\(x = a\frac{1 - t^2}{1 + t^2}\),
\(y = \frac{2at}{1 + t^2}\)
(t being a parameter) represents:
Solution:
We are given parametric equations:
\(x = a\frac{1 - t^2}{1 + t^2}\) and \(y = \frac{2at}{1 + t^2}\)
We aim to eliminate the parameter \(t\) to find the locus (relation between \(x\) and \(y\)).
Step 1: Let’s simplify the expressions:
Let’s denote:
\[
x = a\frac{1 - t^2}{1 + t^2}, \quad y = \frac{2at}{1 + t^2}
\]
Step 2: Divide both equations by \(a\):
\[
\frac{x}{a} = \frac{1 - t^2}{1 + t^2}, \quad \frac{y}{a} = \frac{2t}{1 + t^2}
\]
Let us denote \(X = \frac{x}{a}, Y = \frac{y}{a}\), then:
\[
X = \frac{1 - t^2}{1 + t^2}, \quad Y = \frac{2t}{1 + t^2}
\]
Step 3: Use identity:
\[
X^2 + Y^2 = \left(\frac{1 - t^2}{1 + t^2}\right)^2 + \left(\frac{2t}{1 + t^2}\right)^2
\]
Compute numerator:
\[
(1 - t^2)^2 + (2t)^2 = 1 - 2t^2 + t^4 + 4t^2 = 1 + 2t^2 + t^4 = (1 + t^2)^2
\]
So:
\[
X^2 + Y^2 = \frac{(1 + t^2)^2}{(1 + t^2)^2} = 1
\]
Thus:
\[
\left(\frac{x}{a}\right)^2 + \left(\frac{y}{a}\right)^2 = 1
\Rightarrow \frac{x^2 + y^2}{a^2} = 1
\Rightarrow x^2 + y^2 = a^2
\]
Hence, the locus is a circle of radius \(a\) centered at origin.
Correct Answer: Circle