The limiting molar conductivity of \(AgI\),
\(Λ^0_m(AgI) = Λ^0_m(NaI)+Λ^0_m(AgNO_3)-Λ^0m(NaNO_3)\)
\(Λ^0_m(AgI) = 12.7 + 13.3 – 12.0\)
\(Λ^0_m(AgI) = 26 – 12\)
\(Λ^0_m(AgI) =14\ mS m^2 mol^{–1}\)
So, the answer is \(14\ mS m^2 mol^{–1}\).
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: