The limiting molar conductivity of \(AgI\),
\(Λ^0_m(AgI) = Λ^0_m(NaI)+Λ^0_m(AgNO_3)-Λ^0m(NaNO_3)\)
\(Λ^0_m(AgI) = 12.7 + 13.3 – 12.0\)
\(Λ^0_m(AgI) = 26 – 12\)
\(Λ^0_m(AgI) =14\ mS m^2 mol^{–1}\)
So, the answer is \(14\ mS m^2 mol^{–1}\).


Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.