The limiting molar conductivity of \(AgI\),
\(Λ^0_m(AgI) = Λ^0_m(NaI)+Λ^0_m(AgNO_3)-Λ^0m(NaNO_3)\)
\(Λ^0_m(AgI) = 12.7 + 13.3 – 12.0\)
\(Λ^0_m(AgI) = 26 – 12\)
\(Λ^0_m(AgI) =14\ mS m^2 mol^{–1}\)
So, the answer is \(14\ mS m^2 mol^{–1}\).
If the molar conductivity ($\Lambda_m$) of a 0.050 mol $L^{–1}$ solution of a monobasic weak acid is 90 S $cm^{2} mol^{–1}$, its extent (degree) of dissociation will be:
[Assume: $\Lambda^0$ = 349.6 S $cm^{2} mol^{–1}$ and $\Lambda^0_{\text{acid}}$ = 50.4 S$ cm^{2} mol^{–1}$]
Let one focus of the hyperbola \( H : \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1 \) be at \( (\sqrt{10}, 0) \) and the corresponding directrix be \( x = \dfrac{9}{\sqrt{10}} \). If \( e \) and \( l \) respectively are the eccentricity and the length of the latus rectum of \( H \), then \( 9 \left(e^2 + l \right) \) is equal to: