For the given cell: \[ {Fe}^{2+}(aq) + {Ag}^+(aq) \to {Fe}^{3+}(aq) + {Ag}(s) \] The standard cell potential of the above reaction is given. The standard reduction potentials are given as: \[ {Ag}^+ + e^- \to {Ag} \quad E^\circ = x \, {V} \] \[ {Fe}^{2+} + 2e^- \to {Fe} \quad E^\circ = y \, {V} \] \[ {Fe}^{3+} + 3e^- \to {Fe} \quad E^\circ = z \, {V} \] The correct answer is:
Copper is being electrodeposited from a CuSO\(_4\) bath onto a stainless steel cathode of total surface area of 2 m\(^2\) in an electrolytic cell operated at a current density of 200 A m\(^{-2}\) with a current efficiency of 90%. The mass of copper deposited in 24 h is _________ kg (rounded off to two decimal places). Given: Faraday's constant = 96500 C mol\(^{-1}\), Atomic mass of copper = 63.5 g mol\(^{-1}\).
Identify the major product (G) in the following reaction
As per the following equation, 0.217 g of HgO (molecular mass = 217 g mol$^{-1}$) reacts with excess iodide. On titration of the resulting solution, how many mL of 0.01 M HCl is required to reach the equivalence point?