Step 1: Write the area equation
\[
\text{Area} = \text{Length} \times \text{Width}
\]
\[
810 = (2x+9)\cdot x
\]
Step 2: Form the quadratic equation
\[
810 = 2x^2 + 9x
\]
\[
2x^2 + 9x - 810 = 0
\]
Step 3: Simplify
Divide throughout by 2:
\[
x^2 + \tfrac{9}{2}x - 405 = 0
\]
Multiply through by 2 to avoid fraction:
\[
2x^2 + 9x - 810 = 0
\]
Step 4: Solve using quadratic formula
\[
x = \frac{-9 \pm \sqrt{9^2 - 4(2)(-810)}}{2(2)}
\]
\[
x = \frac{-9 \pm \sqrt{81 + 6480}}{4}
\]
\[
x = \frac{-9 \pm \sqrt{6561}}{4}
\]
\[
x = \frac{-9 \pm 81}{4}
\]
So,
\[
x = \frac{72}{4}=18 \text{or} x = \frac{-90}{4}=-22.5
\]
Width cannot be negative, so $x=18$.
Step 5: Find length
\[
\text{Length} = 2x + 9 = 2(18)+9 = 45
\]
\[
\boxed{\text{Width = 18 m, Length = 45 m}}
\]
The discriminant of the quadratic equation $3x^2 - 4\sqrt{3}\,x + 4 = 0$ will be: