Given polynomial:
\[ P(x) = 8x^2 - 5x - 1 \]
If \( \alpha \) and \( \beta \) are the zeroes of the polynomial, then:
Let the new zeroes be:
\[ \alpha' = \frac{2}{\alpha}, \quad \beta' = \frac{2}{\beta} \]
Sum:
\[ \alpha' + \beta' = \frac{2}{\alpha} + \frac{2}{\beta} = 2\left(\frac{1}{\alpha} + \frac{1}{\beta}\right) = 2\left(\frac{\alpha + \beta}{\alpha \beta}\right) = 2 \left( \frac{5/8}{-1/8} \right) = 2 \times (-5) = -10 \]
Product:
\[ \alpha' \cdot \beta' = \frac{2}{\alpha} \cdot \frac{2}{\beta} = \frac{4}{\alpha \beta} = \frac{4}{-1/8} = -32 \]
A quadratic polynomial with zeroes \( \alpha' \) and \( \beta' \) is: \[ x^2 - (\alpha' + \beta')x + \alpha'\beta' \] Substituting: \[ x^2 - (-10)x + (-32) = x^2 + 10x - 32 \]
\[ \boxed{x^2 + 10x - 32} \]
प्रदेश सरकार की ओर से दसवीं और बारहवीं कक्षा के मेधावी छात्रों को पुरस्कृत किए जाने की जानकारी देते हुए आकर्षक विज्ञापन तैयार कीजिए।
A hydrocarbon which does not belong to the same homologous series of carbon compounds is