The given equation is:
\[ 4x^2 - 9x + 3 = 0 \]
This is in the form \( ax^2 + bx + c = 0 \), where:
\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]
\[ D = b^2 - 4ac = (-9)^2 - 4(4)(3) = 81 - 48 = 33 \]
\[ x = \frac{-(-9) \pm \sqrt{33}}{2 \cdot 4} = \frac{9 \pm \sqrt{33}}{8} \]
The two solutions are: \[ x = \frac{9 + \sqrt{33}}{8} \quad \text{or} \quad x = \frac{9 - \sqrt{33}}{8} \] or compactly, \[ \boxed{x = \frac{9 \pm \sqrt{33}}{8}} \]
If the roots of the quadratic equation \( ax^2 + bx + c = 0 \) are real and equal, then:
सोलर पैनल वाली कंपनी 'उर्जा' की ओर से अपने उत्पाद की जानकारी देने और बिक्री बढ़ाने हेतु एक आकर्षक विज्ञापन तैयार कीजिए।
From one face of a solid cube of side 14 cm, the largest possible cone is carved out. Find the volume and surface area of the remaining solid.
Use $\pi = \dfrac{22}{7}, \sqrt{5} = 2.2$