The given equation is:
\[ 4x^2 - 9x + 3 = 0 \]
This is in the form \( ax^2 + bx + c = 0 \), where:
\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]
\[ D = b^2 - 4ac = (-9)^2 - 4(4)(3) = 81 - 48 = 33 \]
\[ x = \frac{-(-9) \pm \sqrt{33}}{2 \cdot 4} = \frac{9 \pm \sqrt{33}}{8} \]
The two solutions are: \[ x = \frac{9 + \sqrt{33}}{8} \quad \text{or} \quad x = \frac{9 - \sqrt{33}}{8} \] or compactly, \[ \boxed{x = \frac{9 \pm \sqrt{33}}{8}} \]
For \( X = (x_1, x_2, x_3)^T \in \mathbb{R}^3 \), consider the quadratic form:
\[ Q(X) = 2x_1^2 + 2x_2^2 + 3x_3^2 + 4x_1x_2 + 2x_1x_3 + 2x_2x_3. \] Let \( M \) be the symmetric matrix associated with the quadratic form \( Q(X) \) with respect to the standard basis of \( \mathbb{R}^3 \).
Let \( Y = (y_1, y_2, y_3)^T \in \mathbb{R}^3 \) be a non-zero vector, and let
\[ a_n = \frac{Y^T(M + I_3)^{n+1}Y}{Y^T(M + I_3)^n Y}, \quad n = 1, 2, 3, \dots \] Then, the value of \( \lim_{n \to \infty} a_n \) is equal to (in integer).