The given equation is:
\[ 4x^2 - 9x + 3 = 0 \]
This is in the form \( ax^2 + bx + c = 0 \), where:
\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]
\[ D = b^2 - 4ac = (-9)^2 - 4(4)(3) = 81 - 48 = 33 \]
\[ x = \frac{-(-9) \pm \sqrt{33}}{2 \cdot 4} = \frac{9 \pm \sqrt{33}}{8} \]
The two solutions are: \[ x = \frac{9 + \sqrt{33}}{8} \quad \text{or} \quad x = \frac{9 - \sqrt{33}}{8} \] or compactly, \[ \boxed{x = \frac{9 \pm \sqrt{33}}{8}} \]
आप अदिति / आदित्य हैं। आपकी दादीजी को खेलों में अत्यधिक रुचि है। ओलंपिक खेल-2024 में भारत के प्रदर्शन के बारे में जानकारी देते हुए लगभग 100 शब्दों में पत्र लिखिए।
In the adjoining figure, \( \triangle CAB \) is a right triangle, right angled at A and \( AD \perp BC \). Prove that \( \triangle ADB \sim \triangle CDA \). Further, if \( BC = 10 \text{ cm} \) and \( CD = 2 \text{ cm} \), find the length of } \( AD \).
Which of the following factors affect distribution of population?
l. Climate
II. Soil
Ill. Topography
IV. Water