The given quadratic equation is:
\[ 3x^2 - 4\sqrt{3}x + 4 = 0 \]
This is in the standard form \( ax^2 + bx + c = 0 \), where:
\[ D = b^2 - 4ac = (-4\sqrt{3})^2 - 4(3)(4) \] \[ = (16)(3) - 48 = 48 - 48 = 0 \]
Since \( D = 0 \), the quadratic equation has: Real and Equal Roots.
✅ Conclusion: The roots of the equation are real and equal.
If the roots of the quadratic equation \( ax^2 + bx + c = 0 \) are real and equal, then:
From one face of a solid cube of side 14 cm, the largest possible cone is carved out. Find the volume and surface area of the remaining solid.
Use $\pi = \dfrac{22}{7}, \sqrt{5} = 2.2$
निम्नलिखित विषय पर संकेत बिंदुओं के आधार पर लगभग 120 शब्दों में एक अनुच्छेद लिखिए |
डिजिटल इंडिया
संकेत बिंदु -
डिजिटल इंडिया क्या है
डिजिटल होने के लाभ
सरकार द्वारा उठाए गए कदम