Solution (Right triangle):
Step 1: Define variables
Let base $=x$ cm. Then altitude $=x-7$ cm. Hypotenuse $=13$ cm.
Step 2: Apply Pythagoras theorem
\[ x^2+(x-7)^2=13^2. \] \[ x^2+x^2-14x+49=169. \] \[ 2x^2-14x-120=0 \ \Rightarrow \ x^2-7x-60=0. \]
Step 3: Solve quadratic
\[ x=\frac{7\pm\sqrt{(-7)^2-4(1)(-60)}}{2}=\frac{7\pm\sqrt{49+240}}{2}=\frac{7\pm17}{2}. \] So $x=\frac{24}{2}=12$ or $x=\frac{-10}{2}=-5$ (reject negative).
Step 4: Find altitude
Base $=12$ cm, Altitude $=12-7=5$ cm.
\[ \boxed{\text{Base }=12\ \text{cm}, \ \text{Altitude }=5\ \text{cm}} \]
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]
Two concentric circles are of radii $8\ \text{cm}$ and $5\ \text{cm}$. Find the length of the chord of the larger circle which touches (is tangent to) the smaller circle.
Find mean of the following frequency table: