The resistance (\( R \)) of a wire is given by:
\( R = \frac{\rho l}{A} \)
where \( \rho \) is the resistivity, \( l \) is the length, and \( A \) is the cross-sectional area.
The new length is \( l' = l + 0.20l = 1.2l \). The new area is \( A' = A - 0.04A = 0.96A \). The new resistance (\( R' \)) is:
\( R' = \frac{\rho l'}{A'} = \frac{\rho (1.2l)}{0.96A} = \frac{1.2}{0.96} \frac{\rho l}{A} = \frac{1.2}{0.96} R = 1.25R \)
The percentage change in resistance is:
\( \frac{R' - R}{R} \times 100 = \frac{1.25R - R}{R} \times 100 = 0.25 \times 100 = 25\% \)
The percentage change in resistance is a \( \mathbf{25\%} \) increase.

A battery of emf \( E \) and internal resistance \( r \) is connected to a rheostat. When a current of 2A is drawn from the battery, the potential difference across the rheostat is 5V. The potential difference becomes 4V when a current of 4A is drawn from the battery. Calculate the value of \( E \) and \( r \).

Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):
