The integral involves a rational function in terms of $e^{-x}$. To simplify, use the substitution $u = e^{-x}$, so $du = -e^{-x}dx$. This leads to the integral becoming: \[ \int \frac{-du}{16 + 9u^2} \] This matches the standard form for the inverse tangent. Thus, the result is: \[ - \frac{1}{12} \tan^{-1} \left( \frac{3u}{4} \right) + C = - \frac{1}{12} \tan^{-1} \left( \frac{3e^{-x}}{4} \right) + C \] Therefore, the correct answer is $(B)$.