Applying King’s Rule: \[ I = \frac{\pi + 6}{2} \int_{0}^{\pi} \frac{\sin x}{1 + 3\cos^2 x} \, dx \] Let \( \cos x = t \), then \( -\sin x \, dx = dt \). So, \[ I = \frac{\pi + 6}{2} \int_{1}^{-1} \frac{-dt}{1 + 3t^2} \] \[ I = (\pi + 6) \int_{0}^{1} \frac{dt}{1 + 3t^2} \] \[ I = (\pi + 6) \left[\frac{\tan^{-1}(\sqrt{3}t)}{\sqrt{3}}\right]_{0}^{1} \] \[ I = \frac{\pi + 6}{\sqrt{3}} \left(\frac{\pi}{3}\right) \] \[ \boxed{I = \frac{\pi(\pi + 6)}{3\sqrt{3}}} \]
Let \[ f(t)=\int \left(\frac{1-\sin(\log_e t)}{1-\cos(\log_e t)}\right)dt,\; t>1. \] If $f(e^{\pi/2})=-e^{\pi/2}$ and $f(e^{\pi/4})=\alpha e^{\pi/4}$, then $\alpha$ equals
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.