Applying King’s Rule: \[ I = \frac{\pi + 6}{2} \int_{0}^{\pi} \frac{\sin x}{1 + 3\cos^2 x} \, dx \] Let \( \cos x = t \), then \( -\sin x \, dx = dt \). So, \[ I = \frac{\pi + 6}{2} \int_{1}^{-1} \frac{-dt}{1 + 3t^2} \] \[ I = (\pi + 6) \int_{0}^{1} \frac{dt}{1 + 3t^2} \] \[ I = (\pi + 6) \left[\frac{\tan^{-1}(\sqrt{3}t)}{\sqrt{3}}\right]_{0}^{1} \] \[ I = \frac{\pi + 6}{\sqrt{3}} \left(\frac{\pi}{3}\right) \] \[ \boxed{I = \frac{\pi(\pi + 6)}{3\sqrt{3}}} \]
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
Among the following cations, the number of cations which will give characteristic precipitate in their identification tests with
\(K_4\)[Fe(CN)\(_6\)] is : \[ {Cu}^{2+}, \, {Fe}^{3+}, \, {Ba}^{2+}, \, {Ca}^{2+}, \, {NH}_4^+, \, {Mg}^{2+}, \, {Zn}^{2+} \]