Let I=∫0π/43sinx+5cosx136sinxdx We can express 136sinx in terms of 3sinx+5cosx and 3cosx−5sinx:
136sinx=A(3sinx+5cosx)+B(3cosx−5sinx) This gives the equations:
136=3A−5B…(1) 0=5A+3B…(2)
From equation (2), we have B=−35A. Substitute B=−35A into equation (1):
136=3A−5(−35A) 136=3A+325A 136=334A A=34136×3=12 B=−35(12)=−20
Now, rewrite I as:
I=∫0π/4A3sinx+5cosx(3sinx+5cosx)dx+∫0π/4B3sinx+5cosx(3cosx−5sinx)dx =∫0π/4Adx+B[ln(3sinx+5cosx)]0π/4 Substitute A=12 and B=−20:
=12(4π)−20[ln(23+25)−ln(0+5)] =3π−20ln(28)+20ln5 =3π−20ln(42)+20ln5 =3π−20(ln4+ln2)+20ln5 =3π−20(ln22+ln21/2)+20ln5 =3π−50ln2+20ln5