Question:

The integral 0π/4136sinx3sinx+5cosxdx\int_{0}^{\pi/4} \frac{136 \sin x}{3 \sin x + 5 \cos x} \, dx is equal to

Updated On: Mar 20, 2025
  • 3π50loge2+20loge5 3\pi - 50 \log_e 2 + 20 \log_e 5
  • 3π25loge2+10loge5 3\pi - 25 \log_e 2 + 10 \log_e 5
  • 3π10loge(22)+10loge5 3\pi - 10 \log_e (2\sqrt{2}) + 10 \log_e 5
  • 3π30loge2+20loge5 3\pi - 30 \log_e 2 + 20 \log_e 5
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Let I=0π/4136sinx3sinx+5cosxdx I = \int_{0}^{\pi / 4} \frac{136 \sin x}{3 \sin x + 5 \cos x} \, dx We can express 136sinx136 \sin x in terms of 3sinx+5cosx3 \sin x + 5 \cos x and 3cosx5sinx3 \cos x - 5 \sin x:

136sinx=A(3sinx+5cosx)+B(3cosx5sinx) 136 \sin x = A (3 \sin x + 5 \cos x) + B (3 \cos x - 5 \sin x) This gives the equations:

136=3A5B(1) 136 = 3A - 5B \quad \dots (1) 0=5A+3B(2) 0 = 5A + 3B \quad \dots (2)

From equation (2), we have B=53AB = -\frac{5}{3} A. Substitute B=53AB = -\frac{5}{3} A into equation (1):

136=3A5(53A) 136 = 3A - 5 \left(-\frac{5}{3} A \right) 136=3A+253A 136 = 3A + \frac{25}{3} A 136=34A3 136 = \frac{34A}{3} A=136×334=12 A = \frac{136 \times 3}{34} = 12 B=53(12)=20 B = -\frac{5}{3} (12) = -20

Now, rewrite II as:

I=0π/4A(3sinx+5cosx)3sinx+5cosxdx+0π/4B(3cosx5sinx)3sinx+5cosxdx I = \int_{0}^{\pi/4} A \frac{(3 \sin x + 5 \cos x)}{3 \sin x + 5 \cos x} \, dx + \int_{0}^{\pi/4} B \frac{(3 \cos x - 5 \sin x)}{3 \sin x + 5 \cos x} \, dx =0π/4Adx+B[ln(3sinx+5cosx)]0π/4 = \int_{0}^{\pi/4} A \, dx + B \left[ \ln (3 \sin x + 5 \cos x) \right]_{0}^{\pi/4} Substitute A=12A = 12 and B=20B = -20:

=12(π4)20[ln(32+52)ln(0+5)] = 12 \left(\frac{\pi}{4}\right) - 20 \left[\ln \left(\frac{3}{\sqrt{2}} + \frac{5}{\sqrt{2}} \right) - \ln (0 + 5)\right] =3π20ln(82)+20ln5 = 3\pi - 20 \ln \left(\frac{8}{\sqrt{2}}\right) + 20 \ln 5 =3π20ln(42)+20ln5 = 3\pi - 20 \ln (4\sqrt{2}) + 20 \ln 5 =3π20(ln4+ln2)+20ln5 = 3\pi - 20 \left(\ln 4 + \ln \sqrt{2}\right) + 20 \ln 5 =3π20(ln22+ln21/2)+20ln5 = 3\pi - 20 (\ln 2^2 + \ln 2^{1/2}) + 20 \ln 5 =3π50ln2+20ln5 = 3\pi - 50 \ln 2 + 20 \ln 5

Was this answer helpful?
0
0

Top Questions on limits and derivatives

View More Questions