Let \[ I = \int_{0}^{\pi / 4} \frac{136 \sin x}{3 \sin x + 5 \cos x} \, dx \] We can express \(136 \sin x\) in terms of \(3 \sin x + 5 \cos x\) and \(3 \cos x - 5 \sin x\):
\[ 136 \sin x = A (3 \sin x + 5 \cos x) + B (3 \cos x - 5 \sin x) \] This gives the equations:
\[ 136 = 3A - 5B \quad \dots (1) \] \[ 0 = 5A + 3B \quad \dots (2) \]
From equation (2), we have \(B = -\frac{5}{3} A\). Substitute \(B = -\frac{5}{3} A\) into equation (1):
\[ 136 = 3A - 5 \left(-\frac{5}{3} A \right) \] \[ 136 = 3A + \frac{25}{3} A \] \[ 136 = \frac{34A}{3} \] \[ A = \frac{136 \times 3}{34} = 12 \] \[ B = -\frac{5}{3} (12) = -20 \]
Now, rewrite \(I\) as:
\[ I = \int_{0}^{\pi/4} A \frac{(3 \sin x + 5 \cos x)}{3 \sin x + 5 \cos x} \, dx + \int_{0}^{\pi/4} B \frac{(3 \cos x - 5 \sin x)}{3 \sin x + 5 \cos x} \, dx \] \[ = \int_{0}^{\pi/4} A \, dx + B \left[ \ln (3 \sin x + 5 \cos x) \right]_{0}^{\pi/4} \] Substitute \(A = 12\) and \(B = -20\):
\[ = 12 \left(\frac{\pi}{4}\right) - 20 \left[\ln \left(\frac{3}{\sqrt{2}} + \frac{5}{\sqrt{2}} \right) - \ln (0 + 5)\right] \] \[ = 3\pi - 20 \ln \left(\frac{8}{\sqrt{2}}\right) + 20 \ln 5 \] \[ = 3\pi - 20 \ln (4\sqrt{2}) + 20 \ln 5 \] \[ = 3\pi - 20 \left(\ln 4 + \ln \sqrt{2}\right) + 20 \ln 5 \] \[ = 3\pi - 20 (\ln 2^2 + \ln 2^{1/2}) + 20 \ln 5 \] \[ = 3\pi - 50 \ln 2 + 20 \ln 5 \]
Let $\left\lfloor t \right\rfloor$ be the greatest integer less than or equal to $t$. Then the least value of $p \in \mathbb{N}$ for which
\[ \lim_{x \to 0^+} \left( x \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \dots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \dots + \left\lfloor \frac{9^2}{x^2} \right\rfloor \right) \geq 1 \]
is equal to __________.

Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
