Using the lens formula: \[ \frac{n_2}{v} - \frac{n_1}{u} = \frac{n_2 - n_1}{R} \] Substitute the values: \[ \frac{1.5}{v} - \frac{1}{-0.2} = \frac{1.5 - 1}{0.4} \] Simplifying: \[ \frac{1.5}{v} + 5 = \frac{0.5}{0.4} = 1.25 \] Solving for \( v \): \[ \frac{1.5}{v} = 1.25 - 5 = -3.75 \] \[ v = -0.4 \, \text{m} \] Hence, the image is located 0.24 m left to the spherical surface.
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is: