The initial speed of a projectile fired from ground is $u$ At the highest point during its motion, the speed of projectile is $\frac{\sqrt{3}}{2} u$ The time of flight of the projectile is :
\(u\ cosθ=\frac{\sqrt{3}u}{2}\)
\(⇒cosθ=\frac{\sqrt{3}}{2}\)
\(⇒θ=30^∘\)
\(T=\frac{2usin30^∘}{g}=\frac{u}{g}\)
Correct answer is option (b)
A particle is projected at an angle of \( 30^\circ \) from horizontal at a speed of 60 m/s. The height traversed by the particle in the first second is \( h_0 \) and height traversed in the last second, before it reaches the maximum height, is \( h_1 \). The ratio \( \frac{h_0}{h_1} \) is __________. [Take \( g = 10 \, \text{m/s}^2 \)]
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
Rate law for a reaction between $A$ and $B$ is given by $\mathrm{R}=\mathrm{k}[\mathrm{A}]^{\mathrm{n}}[\mathrm{B}]^{\mathrm{m}}$. If concentration of A is doubled and concentration of B is halved from their initial value, the ratio of new rate of reaction to the initial rate of reaction $\left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right)$ is
It is a vector quantity. A vector quantity is a quantity having both magnitude and direction. Speed is a scalar quantity and it is a quantity having a magnitude only. Motion in a plane is also known as motion in two dimensions.
The equations of motion in a straight line are:
v=u+at
s=ut+½ at2
v2-u2=2as
Where,