The relation between heat at constant pressure (\( \Delta H \)) and at constant volume (\( \Delta U \)) is:
\( \Delta H = \Delta U + \Delta n_g RT \)
For benzoic acid:
\( C_6H_5COOH(s) + \frac{15}{2} O_2(g) \rightarrow 7CO_2(g) + 3H_2O(l) \)
\( \Delta n_g = 7 - \frac{15}{2} = -\frac{1}{2} \). Substituting:
\( \Delta H = -321.30 - \frac{1}{2} R \times 300 \)
Here, \( R \approx 8.314 \, \text{J/mol.K} \). Solving gives:
\( x = 150 \)
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
