The correct answer is 20
N = N0e–λt
\(⇒ \frac{6.25}{100} = e^{-λt}\)
\(⇒ e^{-λt} = \frac{1}{16} = (\frac{1}{2})^4\)
⇒ t = 4t1/2
⇒ t = 20 years
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
Radioactivity is a phenomenon observed in certain elements where unstable atomic nuclei spontaneously emit energy and subatomic particles. This process is driven by the desire of the nucleus to achieve a more stable state. It's crucial to understand the three main types of radioactive decay:
Alpha Decay: In alpha decay, a nucleus emits an alpha particle, consisting of two protons and two neutrons.
Beta Decay: Beta decay involves the emission of a beta particle, which can be a positron or an electron, from an unstable nucleus.
Gamma Decay: Gamma decay releases gamma rays, electromagnetic radiation, to achieve a more stable nuclear state.
The emission of these particles and energy is a result of nuclear instability. The rate of decay is characterized by the half-life, the time taken for half of the radioactive material to undergo decay. Radioactivity has diverse applications, from medical treatments and industrial processes to power generation in nuclear reactors.