The correct answer is 20
N = N0e–λt
\(⇒ \frac{6.25}{100} = e^{-λt}\)
\(⇒ e^{-λt} = \frac{1}{16} = (\frac{1}{2})^4\)
⇒ t = 4t1/2
⇒ t = 20 years
For a given reaction \( R \rightarrow P \), \( t_{1/2} \) is related to \([A_0]\) as given in the table. Given: \( \log 2 = 0.30 \). Which of the following is true?
| \([A]\) (mol/L) | \(t_{1/2}\) (min) |
|---|---|
| 0.100 | 200 |
| 0.025 | 100 |
A. The order of the reaction is \( \frac{1}{2} \).
B. If \( [A_0] \) is 1 M, then \( t_{1/2} \) is \( 200/\sqrt{10} \) min.
C. The order of the reaction changes to 1 if the concentration of reactant changes from 0.100 M to 0.500 M.
D. \( t_{1/2} \) is 800 min for \( [A_0] = 1.6 \) M.
A solution of aluminium chloride is electrolyzed for 30 minutes using a current of 2A. The amount of the aluminium deposited at the cathode is _________
Radioactivity is a phenomenon observed in certain elements where unstable atomic nuclei spontaneously emit energy and subatomic particles. This process is driven by the desire of the nucleus to achieve a more stable state. It's crucial to understand the three main types of radioactive decay:
Alpha Decay: In alpha decay, a nucleus emits an alpha particle, consisting of two protons and two neutrons.
Beta Decay: Beta decay involves the emission of a beta particle, which can be a positron or an electron, from an unstable nucleus.
Gamma Decay: Gamma decay releases gamma rays, electromagnetic radiation, to achieve a more stable nuclear state.
The emission of these particles and energy is a result of nuclear instability. The rate of decay is characterized by the half-life, the time taken for half of the radioactive material to undergo decay. Radioactivity has diverse applications, from medical treatments and industrial processes to power generation in nuclear reactors.