The amount of substance remaining after time \( t \) is given by the equation: \[ N(t) = N_0 \left(\frac{1}{2}\right)^{\frac{t}{T}} \] where: - \( N(t) \) is the remaining quantity after time \( t \), - \( N_0 \) is the initial quantity, - \( T \) is the half-life of the substance.
We are told that \( \frac{1}{32} \) of the substance remains undecayed, so: \[ \frac{N(t)}{N_0} = \frac{1}{32} \] This means the substance has undergone 5 half-lives because: \[ \frac{1}{32} = \left(\frac{1}{2}\right)^5 \] Therefore, the time \( t \) is given by: \[ t = 5 \times T = 5 \times 2 = 10 \, {days} \] Hence, the correct answer is (B).
A ball is projected in still air. With respect to the ball the streamlines appear as shown in the figure. If speed of air passing through the region 1 and 2 are \( v_1 \) and \( v_2 \), respectively and the respective pressures, \( P_1 \) and \( P_2 \), respectively, then
If the voltage across a bulb rated 220V – 60W drops by 1.5% of its rated value, the percentage drop in the rated value of the power is: