Lifetimes (in hours) | 0 - 20 | 20 - 40 | 40 - 60 | 60 - 80 | 80 - 100 | 100 - 120 |
|---|---|---|---|---|---|---|
Frequency | 10 | 35 | 52 | 61 | 28 | 29 |
From the data given above, it can be observed that the maximum class frequency is 61, belonging to class interval 60 − 80.
Therefore, modal class = 60 − 80
Lower limit (\(l\)) of modal class = 60
Frequency (\(f_1\)) of modal class = 61
Frequency (\(f_0\)) of class preceding the modal class = 52
Frequency (\(f_2\)) of class succeeding the modal class = 38
Class size (\(h\)) = 20
Mode = \(l\) + \((\frac{f_1 - f_0 }{2f_1 - f_0 - f_2)} \times h\)
Mode = 60\(+ (\frac{61 - 52 }{ 2(61) - 52 - 38}) \times(20)\)
Mode =\(60+ [\frac{9}{122 - 90}] \times 20\)
Mode = \(60 +( \frac{9 \times20}{ 32})\)
Mode = \(60 + \frac{90}{16}\)
Mode = 60 + 5.625
Mode = 65.625
Therefore, modal lifetime of electrical components is 65.625 hours.
The modal class of the following table will be:
\[ \begin{array}{|c|c|} \hline \text{Class Interval} & \text{Frequency} \\ \hline 0-5 & 5 \\ \hline 5-10 & 8 \\ \hline 10-15 & 12 \\ \hline 15-20 & 10 \\ \hline 20-25 & 7 \\ \hline \end{array} \]
The modal class of the following table will be:
\[ \begin{array}{|c|c|c|c|c|c|} \hline \text{Class Interval} & 0\text{--}5 & 5\text{--}10 & 10\text{--}15 & 15\text{--}20 & 20\text{--}25 \\ \hline \text{Frequency} & 2 & 7 & 11 & 8 & 6 \\ \hline \end{array} \]
A student noted the number of cars passing through a spot on a road for 100 periods each of 3 minutes and summarised it in the table given below. Find the mode of the data :
| Number of cars | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 | 50 - 60 | 60 -70 | 70 - 80 |
| Frequency | 7 | 14 | 13 | 12 | 20 | 11 | 15 | 8 |
The following table shows the ages of tha year:
Age (in years) | 5 - 15 | 15 - 25 | 25 - 35 | 35 - 45 | 45 - 55 | 55 - 65 |
|---|---|---|---|---|---|---|
Number of patients | 6 | 11 | 21 | 23 | 14 | 5 |
Find the mode and the mean of the data given above. Compare and interpret the two measures of central tendency.
सड़क सुरक्षा के प्रति जागरूकता हेतु ट्रैफिक पुलिस की ओर से जनहित में जारी एक आकर्षक विज्ञापन लगभग 100 शब्दों में तैयार कीजिए।
The following data shows the number of family members living in different bungalows of a locality:
| Number of Members | 0−2 | 2−4 | 4−6 | 6−8 | 8−10 | Total |
|---|---|---|---|---|---|---|
| Number of Bungalows | 10 | p | 60 | q | 5 | 120 |
If the median number of members is found to be 5, find the values of p and q.