The equations of the sides AB, BC and CA of a triangle ABC are 2x + y = 0, x + py = 39 and x – y = 3, respectively and P(2, 3) is its circumcentre. Then which of the following is NOT true?
\((AC)^2 = 9p\)
\((AC)^2 + p^2 = 136\)
\(32 < area (ΔABC)<36\)
\(34<area(ΔABC)<38\)
The correct answer is (D) : \(34<area(ΔABC)<38\)
Intersection of 2x + y = 0 and x – y = 3 :A(1, –2)
Equation of perpendicular bisector of AB is
x – 2y = –4
Equation of perpendicular bisector of AC is
x + y = 5
Point B is the image of A in line x – 2y + 4 = 0
which can be obtained as
\(B(\frac{-13}{5},\frac{26}{5})\)
Similarly vertex C : (7, 4)
Equation of line BC : x + 8y = 39
So, p = 8
\(AC = \sqrt{(7-1)^2+(4+2)^2}\)
\(= 6\sqrt2\)
Area of triangle ABC = 32.4
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
Electrolysis of 600 mL aqueous solution of NaCl for 5 min changes the pH of the solution to 12. The current in Amperes used for the given electrolysis is ….. (Nearest integer).
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}