Step 1: Calculate the distances. Calculate distances between \(A\), \(B\), and \(C\) to verify if \(ABC\) forms an isosceles right triangle.
Step 2: Verify statement (S1). Use distance formulas to find \(AB\), \(BC\), and \(CA\) and check for equality and Pythagorean theorem.
Step 3: Verify statement (S2). Calculate the area of \(\triangle ABC\) using the determinant method or Heron's formula to see if it matches \( \frac{9\sqrt{2}}{2} \).
Step 4: Conclusion for each statement. Determine the truth of each statement based on calculations.
Conclusion: After performing the calculations, both statements are found to be false.
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.