Step 1: Calculate the distances. Calculate distances between \(A\), \(B\), and \(C\) to verify if \(ABC\) forms an isosceles right triangle.
Step 2: Verify statement (S1). Use distance formulas to find \(AB\), \(BC\), and \(CA\) and check for equality and Pythagorean theorem.
Step 3: Verify statement (S2). Calculate the area of \(\triangle ABC\) using the determinant method or Heron's formula to see if it matches \( \frac{9\sqrt{2}}{2} \).
Step 4: Conclusion for each statement. Determine the truth of each statement based on calculations.
Conclusion: After performing the calculations, both statements are found to be false.
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.