Step 1: Calculate the distances. Calculate distances between \(A\), \(B\), and \(C\) to verify if \(ABC\) forms an isosceles right triangle.
Step 2: Verify statement (S1). Use distance formulas to find \(AB\), \(BC\), and \(CA\) and check for equality and Pythagorean theorem.
Step 3: Verify statement (S2). Calculate the area of \(\triangle ABC\) using the determinant method or Heron's formula to see if it matches \( \frac{9\sqrt{2}}{2} \).
Step 4: Conclusion for each statement. Determine the truth of each statement based on calculations.
Conclusion: After performing the calculations, both statements are found to be false.
The shortest distance between the curves $ y^2 = 8x $ and $ x^2 + y^2 + 12y + 35 = 0 $ is:
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 