\(r\,cos\theta.\frac{1}{2}+r\,sin\theta.\frac{\sqrt3}{2}=2\)
\(r\,cos\theta+\sqrt3 r\,sin\theta=4\)
\(\Rightarrow \frac{r\,cos\theta}{4}+\frac{r\,sin\theta}{\frac{4}{\sqrt3}}=1\)
Hence, This is a straight line
So, the correct option is (D) : a pair of straight line.
\(r\cos(\theta-\frac{\pi}{3})=2\)
\(⇒r(\cos\theta.\cos\frac{\pi}{3}+\sin\theta.\sin\frac{\pi}{3})=2\)
\(⇒r(\cos\theta.\frac{1}{2}+\sin\theta.\frac{\sqrt3}{2})=2\)
\(⇒(r\cos\theta)+\sqrt3.(r\sin\theta)=4\)
\(⇒x+\sqrt3y=4\)
\(⇒(\frac{x}{4}+\frac{y}{\sqrt3}=1)\) → Represents a straight line
So, the correct option is (D) : a pair of straight line.
The curve y(x) = ax3 + bx2 + cx + 5 touches the x-axis at the point P(–2, 0) and cuts the y-axis at the point Q, where y′ is equal to 3. Then the local maximum value of y(x) is
Let α,β be the roots of the equation, ax2+bx+c=0.a,b,c are real and sn=αn+βn and \(\begin{vmatrix}3 &1+s_1 &1+s_2\\1+s_1&1+s_2 &1+s_3\\1+s_2&1+s_3 &1+s_4\end{vmatrix}=\frac{k(a+b+c)^2}{a^4}\) then k=
The derivative of a function in parametric form is emanated in two parts; the first derivative and the second derivative. To emanate the equation, let us suppose there are two dependent variables x and y, and one independent variable ‘t’.
Therefore, x = (x)t, and y = (y)t