Step 1: Find \( \sin(\alpha) \) and \( \cos(\alpha) \). Given \( \tan(\alpha) = \frac{1}{7} \), we calculate \( \sin(\alpha) \) and \( \cos(\alpha) \) using the identity \( \tan^2(\alpha) + 1 = \sec^2(\alpha) \).
Step 2: Find \( \sin(\beta) \) and \( \cos(\beta) \). Given \( \sin(\beta) = \frac{1}{\sqrt{10}} \), we calculate \( \cos(\beta) \) using the identity \( \sin^2(\beta) + \cos^2(\beta) = 1 \).
Step 3: Apply the angle addition formula for \( \sin(2\alpha + \beta) \). We use the identity \( \sin(2\alpha + \beta) = \sin(2\alpha) \cos(\beta) + \cos(2\alpha) \sin(\beta) \), and the double angle formulas for sine and cosine to calculate the value of \( \sin(2\alpha + \beta) \).
Step 4: Final result. The final result is: \[ \sin(2\alpha + \beta) = \frac{3 \times \sqrt{10}}{25}. \]
Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))