Question:

If \( a \) is in the 3rd quadrant, \( \beta \) is in the 2nd quadrant such that \( \tan \alpha = \frac{1}{7}, \sin \beta = \frac{1}{\sqrt{10}} \), then \[ \sin(2\alpha + \beta) = \]

Show Hint

For trigonometric expressions involving multiple angles, use the angle addition and double angle formulas to express the function in terms of simpler trigonometric functions. Then simplify using known identities.
Updated On: Mar 24, 2025
  • \( \frac{3 \times \sqrt{10}}{25} \)
  • \( \frac{3}{\sqrt{10}} \)
  • \( \frac{3}{25\sqrt{10}} \)
  • \( \frac{\sqrt{10}}{3 \times 25} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Find \( \sin(\alpha) \) and \( \cos(\alpha) \). Given \( \tan(\alpha) = \frac{1}{7} \), we calculate \( \sin(\alpha) \) and \( \cos(\alpha) \) using the identity \( \tan^2(\alpha) + 1 = \sec^2(\alpha) \). 
Step 2: Find \( \sin(\beta) \) and \( \cos(\beta) \). Given \( \sin(\beta) = \frac{1}{\sqrt{10}} \), we calculate \( \cos(\beta) \) using the identity \( \sin^2(\beta) + \cos^2(\beta) = 1 \). 
Step 3: Apply the angle addition formula for \( \sin(2\alpha + \beta) \). We use the identity \( \sin(2\alpha + \beta) = \sin(2\alpha) \cos(\beta) + \cos(2\alpha) \sin(\beta) \), and the double angle formulas for sine and cosine to calculate the value of \( \sin(2\alpha + \beta) \). 
Step 4: Final result. The final result is: \[ \sin(2\alpha + \beta) = \frac{3 \times \sqrt{10}}{25}. \]

Was this answer helpful?
0
0