We are given the function:
\[
f(x) = x^x.
\]
Step 1: Differentiating \( f(x) = x^x \)
Taking the natural logarithm on both sides:
\[
y = x^x \Rightarrow \ln y = x \ln x.
\]
Differentiating both sides using implicit differentiation:
\[
\frac{1}{y} \frac{dy}{dx} = x \cdot \frac{1}{x} + \ln x \cdot 1.
\]
\[
\frac{dy}{dx} = x^x \left( 1 + \ln x \right).
\]
Step 2: Finding the critical points
Setting \( \frac{dy}{dx} = 0 \):
\[
x^x \left( 1 + \ln x \right) = 0.
\]
Since \( x^x \neq 0 \) for \( x > 0 \), we solve:
\[
1 + \ln x = 0.
\]
\[
\ln x = -1.
\]
\[
x = \frac{1}{e}.
\]
Step 3: Finding the decreasing interval
- For \( x < \frac{1}{e} \), we check the sign of \( \frac{dy}{dx} \):
\[
1 + \ln x < 0 \Rightarrow \text{Negative derivative} \Rightarrow \text{Decreasing}.
\]
- For \( x > \frac{1}{e} \):
\[
1 + \ln x > 0 \Rightarrow \text{Positive derivative} \Rightarrow \text{Increasing}.
\]
Thus, \( f(x) \) decreases in:
\[
\left[ 0, \frac{1}{e} \right].
\]